
1

BY SEMAPHORE

Rails Testing

Handbook

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

2

Table of contents

Introduction

Applying BDD to Ruby on Rails Web Applications

Setting up a BDD Stack on a Rails 5 Application

Bootstrapping a User Authentication System

01

03

04

05

06

07

Behavior-driven development02
13

6

4

19

29

41

61

Developing a CRUD Application by Following the
BDD approach

Final Words

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

3

Rails Testing Handbook

BDD is one of the things that Semaphore developers practice every day.

Rails Testing Handbook will show you how to do it right.

If you’d like to read more, we regularly share our thoughts on engineering,

product development, and testing on our Semaphore blog.

This guide was created by Marko Anastasov, Stefan Mijučić, Igor Šarčević,
Milica Maksimović, and Dunja Radulov.

Cover and chapter illustrations: Tamara Čubrilo

 © Copyright warning

Please don’t share this book, use any content or imagery, or otherwise try to use it for your own gain. If

you do share or write about it somewhere please give Rendered Text appropriate credit and a link.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://semaphoreci.com/blog/?utm_source=ebook&utm_medium=pdf&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

4

Back in 2008, I was working on a Rails app where one of its features was a

multi-step reservation process. Each step had many possible states, some of which

were simply static options, and some were branching into a different workflow.
We would sometimes write unit tests, but only after finalizing work on a complex
method or a class.

Getting anything done was hard. We’d change one thing, then spend about an hour

on manual testing in the web browser to check if everything is still working. We’d

often be surprised by the fact that we broke a seemingly unrelated use case.

Sometimes we’d figure that out on our own, and sometimes we’d ship a new version
to production and the client would email us about what had just stopped working.

Getting that kind of news felt the worst. It felt like we were wasting a lot of our

client’s and our own time. We knew we could do better than that.

Then, we discovered Cucumber. There was a part on its website saying that it was

built for “behavior-driven development (BDD)” and “acceptance testing”, but all we

saw was that we could define a test once, and Cucumber would automatically
launch a web browser, run the application, and do the work of feature verification
instead of us.

Introduction

CHAPTER 1

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

5

That felt like magic. As soon as we started writing Cucumber scenarios for the

feature set we’ve been working on, our development accelerated by an order of

magnitude. We could add, remove and change code without worrying that we would

break something. When something did break, a failing scenario would let us know,

and we’d quickly fix it before deploying a new version to users.

From that point on, we wanted to write runnable test scenarios for every feature that

we’d work on. Then, we wanted to have them before we even wrote a single line

of implementation code. Afterwards, we wanted tests for every layer of application

code below, too. We continued happily working on that project for years to come.

Perhaps you, dear reader, are in a similar situation. Maybe you’ve heard that there’s a

connection between writing tests first and good design, and you want to become a
better programmer. Or maybe you’re familiar with test-driven development in

another language, but want to develop the habit specifically for Rails.

This book aims to provide that upgrade. Our discussion and examples will be
practical, because our knowledge comes from practicing BDD in developing real

products — not just theorizing about it. Over the past decade, our company
Rendered Text has evolved from being a small Rails consultancy to helping thou-

sands of organizations deliver better code faster with Semaphore, our CI/CD product.

All that time we’ve been doing BDD, and it has helped us write robust, sustainable

code at a steady pace — regardless of whether the app has 2,000 lines of code or

50,000.

As the software development industry matures, practicing BDD is becoming a

standard mark of a software craftsman. This text will help you start practicing it.
Enjoy!

Marko Anastasov

Rendered Text & SemaphoreCI.com cofounder

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
http://renderedtext.com/?utm_source=ebook&utm_medium=email&utm_campaign=the_ultimate_guide_to_bdd_with_rails&utm_content=community
https://semaphoreci.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
http://renderedtext.com/?utm_source=ebook&utm_medium=email&utm_campaign=the_ultimate_guide_to_bdd_with_rails&utm_content=community
https://semaphoreci.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

6

Behavior-driven Development

Behavior-driven development (BDD) is about minimizing the feedback loop between
business owners and developers. It is a logical step forward in the evolution of

software development. In this section, we’ll explain the concepts behind BDD and its
origin.

CHAPTER 2

Introduction

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

7

Waterfall

If you are a software developer or an engineering manager, you are probably familiar

with the Waterfall model, recognizable by the following diagram:

What was later named “Waterfall” was first formally described by Winston Royce in
his 1970 paper “Managing the development of large software systems”. Most people

assume that this process was presented as the ultimate solution at the time.

However, Royce recognized that having a testing phase at the end of the develop-

ment process is a major problem.

This model is still used to develop software in many companies across the world.

Waterfall implies flow, but in practice there are always feedback loops between
phases. All major improvements to the model over time have been made by minimiz-

ing the feedback loops and making them as predictable as possible. For example, if
we write a program, we want to know how long it will take us to find out if it works.
On the other hand, if we design a part of the system, we want to find out if it is actu-

ally programmable and verifiable, and at what cost.

So, when we look at a feedback loop, we look for methods we can use to minimize
it. At first, our goal is to remove obviously wasteful work. Later, we start realizing
that we are able to optimize and do things faster and better than we could have ever
imagined back when we were doing things the old way.

Waterfall model

SYSTEM REQUIREMENTS

SOFTWARE REQUIREMENTS

ANALYSIS

PROGRAM DESIGN

CODING

TESTING

OPERATIONS

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

8

The First Optimization: Test-first Programming

The first optimization happened by addressing the Coding and Testing phases.

In the traditional quality assurance-based (QA-based) development model, a pro-

grammer writes code and submits it in some way to the QA team. It takes a day, a

few days, or weeks to get a report if the code, and the rest of the program work. A

lot of times there are bugs, so we need to go back to programming and fix all the
issues.

To cut down the feedback loop, we start coding and verifying at the same time. First,

we write some code, and then we write some tests for it. Tests produce an excellent
side effect, the automated test suite, which we can run at any time to verify every

part of the system for which we have written a test. Afterwards, we want to have a

test suite that covers the entire system, so that we can work as safely as possible.

The feedback loop of coding followed by testing still takes some time, so we invert

it, and we start writing tests before writing a single line of code. The feedback loop

becomes very small, and we soon realize that we are writing only the code we need
in order to pass the tests that we wrote.

This is called test-first programming. When we work test-first, we use the tests
we write to help us “fill in” the implementation correctly. This reduces the number of
bugs, increases programmer productivity, and positively affects the velocity of the

whole team.

CODING

“Bugs”

TESTING

CODING

TESTING

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

9

Once we have a continuous loop of testing and coding, we’re still doing all our pro-

gram design upfront. We’re using test-first programming to make sure that our code
works, but there’s a feedback loop where we may find out (disturbingly late) that a
design is difficult to test, impossible to code, performs badly or just doesn’t fit
together with the rest of the system.

To minimize this loop, we apply the same technique. We invert it by doing test-first
programming before we start designing. In other words, we do the Testing, Coding

and Program Design all at the same time. A test influences the code, which in turn
influences the design, which influences our next test.

This is test-driven development (TDD). It drives our design ideas in an organic way,

and we implement only the parts of the design that we need, in a way which can

easily evolve too. Design now includes a substantial refactoring step, which gives us

confidence to under-design instead of over-engineer. We end up having just enough
design and appropriate code which meets our current requirements.

Test-driven Development

CODING

TESTING

DESIGN

Test-driven development

TESTING

DESIGN

CODING

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

10

TDD combines test-first programming with design thinking by continuous
application of refactoring principles and patterns. The positive side effects are now

amplified. We have reduced the number of bugs, and we are not writing any code
that doesn’t help us with implementation. This further increases a team’s productiv-

ity by helping it avoid design mistakes which are more costly to fix the later they are
detected.

We can apply the same technique and bring Analysis in our loop. Now, we test-drive

a feature before we try to implement another. The duration of such cycles for a

developer is measured in hours, sometimes even minutes, not days or weeks.

Now that we are designing, coding and testing in one loop, we can look back at the

Analysis and try to understand what we need to build. Again, we’re interested in

optimizing the duration of the loop. In practice, this would involve preparing a list of
a dozen or more features and passing it on to developers. They need to complete
all of the features before moving forward. This way, we often end up in a situation

of implementing features that we don’t need. Sometimes we discover new features

we didn’t expect we would need, or discover something new about the features we
knew we needed.

The Second Optimization:
Behavior-driven Development

“Not what we need”

TESTING

DESIGN

ANALYSIS CODING

TESTING

DESIGN

ANALYSISCODING

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

11

After applying this technique consistently for a while, we notice that we tend to

break down all features in the smallest units and consistently deliver them one by

one. We improve our understanding of how features affect one another and find
ourselves being able to respond to changes faster. We can identify and discard un-

wanted features quickly and give priority to important features.

By test-driving our analysis, we understand better the behavior of the system we

need to build and how to appropriately design and implement it. All that we are

doing from day one is producing a test suite, which keeps our entire system

constantly verifiable.

This is called behavior-driven development. It saves time for both the stakeholders

(business owners) and the development team. By asking questions early, developers

help both themselves and the stakeholders gain a deep understanding of what it is

that they are building. Stakeholders get results at a predictable pace and, since the

features are worked on in small chunks, estimates can be done more accurately, and

new features can be planned and prioritized accordingly.

If you take a look at the remaining phases listed in the Waterfall diagram, you may

wonder if the same feedback loop minimization can be applied to them as well. The
answer is, of course, yes. However, such loops are of a scope that is broader than

just design and development, and they involve people working across very different

fields. We’ll mention them briefly.

Lean Startup would be the closest concept that brings together gathering require-

ments, feature development and marketing as a way to close the loop on learning

what a startup needs to build. Of course, the process goes somewhat differently in

enterprises, although they are learning to apply the lean startup principles in many

projects as well.

Going Even Faster

Behavior-driven development

TESTING

DESIGNANALYSIS

CODING

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

12

Merging BDD with deployment and operations brings us to the broad concept of

continuous delivery. The most important processes are continuous integration (CI)

and continuous deployment, which you can easily configure for any project on
Semaphore.

Behavior-driven development evolved from optimizing various phases in the
software development process. By analyzing, testing, coding and designing our
system in one short feedback loop, we are able to produce better software by

avoiding mistakes and wasteful work.

It is a common misconception that TDD is about testing and that, since it has its

origins in TDD, BDD is just another way of approaching software testing. This is not

the case, although tests are a nice byproduct. TDD is a holistic approach to software

development, derived from one simple idea: wanting to optimize the feedback loops
in our work.

None of the steps required to practice BDD are required to make software in general.

They also take time to learn and apply effectively. Still, their payoff of a sustainable

process that enables us to continuously produce working software is well worth the

investment.

Summing up

Continuous Delivery

MAINTENANCE

DEPLOYMENT

DESIGN

CODING

ANALYSIS

TESTING

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
http://semaphoreci.com/?utm_source=ebook&utm_medium=email&utm_campaign=the_ultimate_guide_to_bdd_with_rails&utm_content=community

13

Applying BDD to

Ruby on Rails Web Applications

In this section, we’ll focus on applying BDD principles while developing a web

application using Ruby on Rails.

CHAPTER 3

Introduction

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
http://rubyonrails.org/

14

Understanding The “Behavior” Point of View

Understanding The “Behavior” The “Given / When /
Then” Communication Pattern Point of View

When applying test-driven development (TDD), developers can easily fall into the

trap of using unit tests to test what an object or method is, rather than what it does,

which is a lot more useful. An example would be writing a test which asserts that
a collection of comments is specifically an array, and not one of its unique features,
such as being sorted by time. In most cases it shouldn’t matter if we change the

implementation of that collection to return a custom enumerable class. More general-

ly, changing the implementation of an object shouldn’t break its test suite as long as

what the object does remains the same.

BDD puts focus on behavior — what a thing does — on all levels of development.

Initially, the word “behavior” may seem strange. Another way to frame this is to think

about descriptions. We can describe every low-level method, object, button or screen

to another person — and what we will be describing is exactly what a behavior is.
Adopting this approach changes the way we approach writing code.

Most problems in software development are communication problems.

For example, business owners fail to describe every use case of a proposed
functionality, developers misunderstand the scope of a feature or a product team

does not have a protocol to verify if a feature is done. BDD simplifies the language
we use to describe scenarios in which software should be used: Given some context
or state of the world, When something happens, Then we expect some outcome.

Given, When, Then are simple words we can use to describe a complex feature,
code object or a single method equally well. It is a pattern that all members of the

team in various roles can understand. These expressions are also built-in in many
testing frameworks, such as Cucumber. A clear formulation of the problem and the

solution (behavior) that we need to implement helps us write better code.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

15

Overview of BDD Tools for Rails

RSpec

Ruby on Rails was the first web framework to ship with an integrated testing frame-

work. This acted as a springboard for further advancements of the craft. At the same

time, the expressiveness of Ruby and the productivity boost in developing web
applications with Rails attracted many experienced and high-profile engineers to
the community early on. These are the main reasons why most of the BDD tools and

practices gained initial traction and why they have seen significant development in
the Rails community.

When you generate a new Rails application with default options, it sets the scene

for testing using test/unit, a testing library that comes with Ruby. However, there

are tools which make BDD easier to apply. We recommend using RSpec as the main

testing library and Cucumber for writing high-level acceptance tests.

RSpec is a popular BDD testing library for Ruby. Tests written using RSpec — called

specs — are executable examples of expected behavior of a piece of code in a speci-
fied context. This is much easier to understand by reading the following code:

Well-written specs are easy to read, and as a result, understand. Try reading the

code snippet above out loud. We are describing a shopping cart, saying that, given

a blank context, when we create a new shopping cart, we expect(shopping_cart).to
be_empty.

describe ShoppingCart do

 context “when first created” do
 it “is empty” do
 shopping_cart = ShoppingCart.new

 expect(shopping_cart).to be_empty

 end

 end

end

Running this spec produces output which resembles a specification:

We could use RSpec to specify an entire system, however we can also use a tool

which helps us write and communicate using more appropriate (broad) terms.

ShoppingCart

 when first created
 is empty

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
http://rspec.info/
https://cukes.info/

16

Cucumber

The BDD Cycle in Rails

As we explained in the first chapter of this guide, we want to test-drive the analysis
phase of every new feature. To do that, we need customer acceptance tests to drive

the development of the code which will actually implement the feature. If you are

a developer working in a sufficiently complex organization, you may want to have
somebody else (a customer or product manager) write acceptance tests for you. In

most cases, the developer writes them. This is a good practice, because it helps us

understand better what it is that we need to build. Cucumber provides the language

and format to do that.

Cucumber reads plain text descriptions of application features, organized in
scenarios. Each step in the scenario is implemented using concrete code, and it

automates interaction with your application from the user’s standpoint. For example:

If this were a web application, the scenario above could automatically boot a test in-

stance of the application, open it in a web browser, perform steps as any user would

do, and then check if certain expectations have been met.

In practice, BDD implies an outside-in approach. We start with an acceptance test,

then write code in the views, and work our way down to the models. This approach

helps us discover any new objects or variables we may need to effectively implement

our feature early on, and make the right design decisions based on this.

1. Start with a new Cucumber scenario. Before you write it, make sure to analyze
and understand the problem. At this point you need to know how the user interface

allows a user to do a job. Do not worry about the implementation of scenario steps.

2. Run the scenario and watch it fail. This will tell you which steps are failing, or

pending implementation. At first, most of your steps will be pending (undefined).

THE BDD CYCLE IN RAILS CONSISTS OF THE FOLLOWING STEPS:

Feature: Reading articles

Scenario: Commenting on an article
 Given I am signed in
 And I am reading an article with “2” comments
 When I reply to the last comment
 Then the article should have “3” comments
 And I should be subscribed to follow-up comments

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

17

3. Write a definition of the first failing or pending spec. Run the scenario and

watch it fail.

4. Test-drive the implementation of a Rails view using the red-green-refactor cycle

with RSpec. You’ll discover instance variables, controllers and controller actions that

the view will need to do its job. This is also the only phase which has been proved to

be optional in practice. An alternative approach is to simply prepare the views and

controllers before moving on to the next step.

5. Test-drive the controller using the red-green-refactor cycle with RSpec. Make

sure that the instance variables are assigned and that the actions respond correctly.

The controllers are typically driven with a mocking approach. With the controller tak-

en care of, you will know what the models or your custom objects should do.

6. Test-drive those objects using the same red-green-refactor cycle with RSpec.

Make sure that they provide the methods needed by the controller and the view. If

you are working on a new feature for which a model does not exist yet, you should
now generate the model and the corresponding database migrations. At this point

you’ll know exactly what you need them to do.

7. Once you have implemented all the objects and methods you need and the corre-

sponding specs are passing, run the Cucumber scenario you started with to make

sure that the step is satisfied.

WRITE A SCENARIO

RUN THE SCENARIO

IMPLEMENT A STEP

DEFINITION

REFLECT ON REFACTORING

AND VALIDATE WITH

STAKEHOLDERS

WRITE A

FAILING SPEC

WRITE CODE TO

MAKE SPEC PASS

REFRACTOR

FAIL PASS

STEP PASSES

1. View
2. Controller
3. Model / domain object

In order:

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

18

Once the first scenario step passes, move on to the next one and follow the same
steps. Once your entire scenario has been implemented — the scenario is passing,

along with all underlying specs — take a moment to reflect if there is something that
you can refactor further.

Once you’re sure that you’ve completed the scenario, either move on to the next one,
or show your work to others. If you work with a team, create a pull request or an

equivalent request for a code review. When there are no more related scenarios left,

show your work to your project manager or client, asking them to verify that you’ve

built the right thing by deploying a feature branch to a staging server.

In this section, we explored how to apply behavior-driven development when devel-
oping a web application using Ruby on Rails, step by step. At this point you should

be ready to start writing code the BDD way.

Moving On

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

19

Setting up a BDD Stack on a

Rails 5 Application

In this chapter we will guide you through the process of generating a new Rails 5

application, with all the necessary tools to set up a behaviour-driven development

(BDD) flow.

WE WILL SET UP 5 TOOLS THAT REPRESENT THE BASE OF BDD

DEVELOPMENT IN RAILS:

• RSpec for writing unit tests

• Cucumber for writing acceptance tests

• Shoulda Matchers for enhancing model tests

• Factory Bot for factory based database fixtures
• Database Cleaner for setting up a clean environment between test runs

• Rails Controller Testing for expanding our controlling testing arsenal

When you’re finished setting up the project on your machine, we will set it up on
Semaphore and establish a fully automated continuous integration workflow.

CHAPTER 4

Introduction

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
http://rspec.info/
https://cucumber.io/
https://github.com/thoughtbot/shoulda-matchers
https://github.com/thoughtbot/factory_bot
https://github.com/DatabaseCleaner/database_cleaner
https://github.com/rails/rails-controller-testing
http://semaphoreci.com/?utm_source=ebook&utm_medium=email&utm_campaign=the_ultimate_guide_to_bdd_with_rails&utm_content=community

20

System Prerequisites

Bootstrapping a Rails Application

To follow our guide, you need to have the following installed on your Unix-based
machine.

• Git,

• Ruby 2.4.0,

• Node.js, and

• PostgreSQL 9.5.

Let’s start by installing Rails on our machines. Run the following command in your
terminal:

Now, we are ready to generate a new Rails application.

gem install rails

rails new bdd-app -d postgresql

cd bdd-app

bundle install --path vendor/bundle

bundle exec rails db:create
bundle exec rails db:migrate

Install your Rails application's dependencies:

The -d postgresql specifies that our application will use PostgreSQL as our database
management system instead of SQLite, which is set as a default for Rails.

Let’s now switch to your application’s directory:

By passing the --path parameter we are telling bundler to install gems in the

bdd-app/vendor/bundle directory. If you leave off the parameter, gems will be in-

stalled globally, which isn’t a good practice if you are working on more than one Ruby

application on the development machine.

Finally, set up your database:

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://git-scm.com/
https://www.ruby-lang.org/en
https://nodejs.org/en
https://www.postgresql.org/

21

When the command finishes, you should have a new spec directory in your project.
This directory is the base for all of your unit specs.

First, we will set up RSpec for writing unit specs.

Start by adding rspec in the Gemfile file, under the development and test group:

Installing RSpec

Installing Cucumber

Next, we will continue to set up Cucumber, the tool used for writing acceptance
tests.

Run bundle install to install the gem on your local machine.

group :development, :test do
 ...
 gem ‘rspec-rails’, ‘~> 3.5’
end

bundle exec rails generate rspec:install

group :development, :test do
 ...
 gem ‘cucumber-rails’, require: false
end

Add cucumber-rails gems to the :development, :test group of your Gemfile:

To finish the install, invoke the rails generator to set up the features directory in
your application:

Run bundle install to install the gem on your local machine.

To finish the install, invoke the Rails generator to set up the spec directory in your
application.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

22

$ bundle exec rails generate cucumber:install

Running via Spring preloader in process 2192
 create config/cucumber.yml
 create script/cucumber
 chmod script/cucumber
 create features/step_definitions
 create features/step_definitions/.gitkeep
 create features/support
 create features/support/env.rb
 exist lib/tasks
 create lib/tasks/cucumber.rake
 gsub config/database.yml
 gsub config/database.yml
 force config/database.yml

group :development, :test do
 ...
 gem ‘shoulda-matchers’,
 git: ‘https://github.com/thoughtbot/shoulda-matchers.git’,
 branch: ‘rails-5’
end

bundle install

When the command finishes, you should have a new features directory in your
project. This directory is the base for all of your acceptance tests.

Installing Shoulda-matchers

Install the gem by running:

Shoulda-matchers gem speeds up our testing time by using wrappers around

common Rails functionality, such as validations, associations and redirects.

To install shoulda-matchers we need to add shoulda-matchers gem to our develop-

ment and test group inside the Gemfile:

We need to configure this gem by specifying the test frameworks and libraries we
want to use it with. Open spec/rails_helper.rb and paste the following block at the
end:

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://github.com/thoughtbot/shoulda-matchers

23

Shoulda::Matchers.configure do |config|
 config.integrate do |with|
 with.test_framework :rspec

 with.library :active_record
 with.library :active_model
 with.library :action_controller
 with.library :rails
 end
end

group :development, :test do
 ...
 gem ‘factory_bot_rails’
end

bundle install

Installing FactoryBot

Installing the Database Cleaner

Factory Bot is a gem used for making “fake” objects as test data. It is essentially a

fixtures replacement with a clear definition syntax. It allows you to create fake ob-

jects in tests without providing a value for each attribute of the given object. If you

don’t provide any values to the attributes of the object, factory_bot uses the default
values that are previously defined in factory’s definition.

We want to make sure that the state of the application is consistent every time we

run our tests. The best way to do this is to clean all the data in the database between

each test run, and construct a new clean state for each test.

The database-cleaner gem is a set of strategies for cleaning our database between

test runs.

Add the following line to the development and test group of your Gemfile:

Install the gem with:

After the installation, you can place factories for your database models in the

spec/factories directory.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://github.com/thoughtbot/factory_bot_rails
https://github.com/DatabaseCleaner/database_cleaner

24

The rails-controller-testing gem expands the capabilities of our controller specs. It
allows us to test variable and template assignments.

Gemfile
group :test do
 gem ‘database_cleaner’
end

RSpec.configure do |config|

 config.before(:suite) do
 DatabaseCleaner.strategy = :transaction
 DatabaseCleaner.clean_with(:truncation)
 end

 config.around(:each) do |example|
 DatabaseCleaner.cleaning do
 example.run
 end
 end

end

gem ‘rails-controller-testing’

Setting up the Rails Controller Testing gem

First, add the gem to the :test group in your Gemfile:

Add it to your Gemfile under the test group:

Run bundle install to install the gem.

When the gem is installed, we will set up a cleaning strategy for RSpec tests. Open

the spec/rails_helper.rb file, and add the following snippet:

Run bundle install to install the gem.

RSpec automatically integrates with this gem. Adding the gem to your Gemfile is
sufficient for the helpers to work in your controller specs.

We don’t have to make any modifications to Cucumber. The cucumber-rails
generator already created all the necessary hooks to integrate itself with the

database-cleaner gem.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://github.com/rails/rails-controller-testing

25

echo ‘vendor/bundle’ >> .gitignore

Setting up a Repository

git add .

git commit -m “Bootstrapping Rails BDD application”

Then, let’s create our first commit.

Visit https://github.com/new and create a new repository for your project. GitHub will

give you the instructions how to connect your local repository with the remote one.

We will use GitHub to set up your repository for this project.

First, let’s make sure that our repository is ready to be published and that we won’t

push any unnecessary file or directory to GitHub.

Add the vendor/bundle directory to your .gitignore file to prevent pushing gems to
Github.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://github.com/new

26

git remote add origin git@github.com:<YOUR-USERNAME>/<YOUR-REPO>.git
git push -u origin master

Setting up Continuous Integration

As the final step in this chapter, we will make sure that our project is started with a
clean, green, build. This will be our first safe point of return for our application, and
will act as the solid foundation for further development.

The first step is to create a free Semaphore account and then add a new project to

Semaphore.

Finally, add the new remote and push your code to GitHub.

Choose your GitHub repository from the list:

Follow the setup guide. Semaphore will recognize that you have a Rails project with
Postgresql, and will generate all the commands for a successful first build.

Let’s tweak the command list, and add our RSpec and Cucumber test suites.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://semaphoreci.com/users/sign_up?utm_source=ebook&utm_medium=pdf&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://semaphoreci.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://semaphoreci.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://semaphoreci.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

27

Hit Build With These Settings to start the first build for your project.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

28

Congratulations! You’ve set up a great foundation for behaviour-driven development

with Rails 5, RSpec and Cucumber.

Conclusion

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

29

Bootstrapping a User Authentication

System

CHAPTER 5

Most of web facing applications need some sort of an authentication mechanism to con-

trol access to the internal resources of the system. This is a natural continuation to the

previous chapter where we’ve set up a base for behaviour driven development.

In this chapter, we will cover setting up a user authentication system in Rails using the

Devise gem.

Introduction

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://github.com/plataformatec/devise

30

Defining our Goals
Before we start writing any code, we should define our end goals. This will focus our

attention and help us write code more efficiently.

To cover all the basic use cases, we want to allow users to sign up, log in, and log

out. Let’s write down these requirements in a Cucumber feature file.

A Cucumber feature starts with a title and a comment written in plain English. While

the original goal of this syntax design was to allow non-technical people to under-
stand the scenarios, this also helps developers clarify their thoughts. By writing a

scenario in advance, we define the scope of the scenario and spell out the functional-
ity in plain English, effectively codifying the application design. This helps clarify our

thoughts and manage the work that’s ahead of us.

We continue with defining scenarios that describe the behaviour of our feature. First,
the sign up scenario:

Next, we describe how our users will log in:

Finally, we will cover logging out:

features/authentication.feature

Feature: Authentication

 In order to use the website
 As a user
 I should be able to sign up, log in and log out

features/authentication.feature

Scenario: Signing up
 Given I visit the homepage
 When I fill in the sign up form
 And I confirm the email
 Then should see that my account is confirmed

features/authentication.feature

 Scenario: User Logs In
 Given I am a registered user
 And I visit the homepage
 When I fill in the login form
 Then I should be logged in

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

31

Writing Tests for our Cucumber Feature

features/step_definitions/authentication_steps.rb

Given(“I visit the homepage”) do
 pending # Write code here that turns the phrase above into concrete actions
end

When(“I fill in the sign up form”) do
 pending # Write code here that turns the phrase above into concrete actions
end

When(“I confirm the email”) do
 pending # Write code here that turns the phrase above into concrete actions
end

Then(“should see that my account is confirmed”) do
 pending # Write code here that turns the phrase above into concrete actions
end

Given(“I am a registered user”) do
 pending # Write code here that turns the phrase above into concrete actions
end

When(“I fill in the login form”) do
 pending # Write code here that turns the phrase above into concrete actions
end

Then(“I should be logged in”) do
 pending # Write code here that turns the phrase above into concrete actions
end

Given(“I am logged in”) do
 pending # Write code here that turns the phrase above into concrete actions
end

When(“I click on the log out button”) do
 pending # Write code here that turns the phrase above into concrete actions
end

Then(“I should be redirected to the log in page”) do
 pending # Write code here that turns the phrase above into concrete actions
end

features/authentication.feature

 Scenario: User Logs Out
 Given I am a registered user
 And I am logged in
 And I visit the homepage
 When I click on the log out button
 Then I should be redirected to the log in page

Now that the high level goals are laid out, we continue to define tests based on the
steps in Cucumber file.

Cucumber helps us out at this point. If we run bundle exec cucumber, it displays a list
of steps that are not defined.

Let’s use the output of Cucumber to create a step definition file for user
authentication:

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

32

Given(“I visit the homepage”) do
 visit root_path
end

When(“I fill in the sign up form”) do
 click_link “Sign up”

 fill_in “user_email”, :with => “tester@testdomain.test”
 fill_in “user_password”, :with => “pa$$word”
 fill_in “user_password_confirmation”, :with => “pa$$word”

 click_button “Sign up”
end

Given(“I confirm the email”) do
 open_email(“tester@testdomain.test”)

 visit_in_email(“Confirm my account”)
end

Then(“I should see that my account is confirmed”) do
 message = “Your email address has been successfully confirmed”

 expect(page).to have_content(message)
end

We have now our Cucumber steps, however all of them are still pending. Let’s define
them one by one.

A step definition is nothing more than plain Ruby code. You can write anything in
the step definitions, but usually we use Capybara helpers to set up tests, and RSpec
expectation to verify that the system ended up in the desired state.

We will use Capybara to navigate our application. It defines helpers for visiting pages
in our application with the visit helper, clicks on links with click_link helper, and it has
more features that are described in its documentation.

For the email verification steps, we will use the email_spec gem that provides
helpers such as open_email, visit_in_email, and other email handling shortcuts that
are very useful for testing.

The Then steps are usually used to set up expectation on the system. In our case,
we will use the expect assertion to test whether the current page has the Your email
address has been successfully confirmed message.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://github.com/teamcapybara/capybara

33

Given(“I am a registered user”) do
 @registered_user = FactoryBot.create(:user,
 :email => “tester@testdomain.test”,
 :password => “pa$$word”)
end

When(“I fill in the login form”) do
 fill_in “user_email”, :with => “tester@testdomain.test”
 fill_in “user_password”, :with => “pa$$word”

 click_button “Log in”
end

Then(“I should be logged in”) do
 expect(page).to have_content(“Logged in”)
end

Given(“I am logged in”) do
 visit root_path

 fill_in “user_email”, :with => “tester@testdomain.test”
 fill_in “user_password”, :with => “pa$$word”

 click_button “Log in”
end

When(“I click on the log out button”) do
 click_button “Log out”
end

Then(“I should be redirected to the log in page”) do
 expect(page).to have_content(“Log in”)
end

Every step is now defined. Let’s run Cucumber to see what is the current state of our
authentication system:

The rest of the steps are a variation of the above cases. We either use Capybara to

navigate our application and fill in forms, or we use the RSpec expect matcher to
verify that a message appeared on the screen.

In the “I am a registered user” step we will make sure that there is an existing user
account in our system. For this purpose, we will assume that we have a FactoryBot

factory that can create a valid user account in our system.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

34

$ bundle exec cucumber

Failing Scenarios:
cucumber features/authentication.feature:7 # Scenario: Signing up
cucumber features/authentication.feature:13 # Scenario: User Logs In
cucumber features/authentication.feature:19 # Scenario: User Logs Out

3 scenarios (3 failed)
13 steps (3 failed, 10 skipped)
0m0.193s

gem ‘devise’

bundle exec rails generate devise:install

config.action_mailer.default_url_options = { host: ‘localhost’,
port: 3000 }

All our tests are failing. This is the expected outcome as we have not yet
implemented any code to support it.

Setting Up Devise

Devise is the de-facto authentication system for Rails applications. It takes care of

storing user passwords securely and it comes prepackaged with all the views neces-

sary for the user account management.

To install Devise we will add it to the Gemfile :

Run bundle install to install the gem.

Following a successful installation, run this command to generate Devise views, con-

trollers, and models in your application:

The output of the devise:install command will suggest several changes in the appli-

cation. We will use several of them.

To make the user mailer work in our local development environment, we will add the

following snippet to the config/environments/development.rb and config/environ-

ments/test.rb files:

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

35

Add alerts and notifications to the application layout app/views/layouts/application.
html.erb. This will be used by Devise to display errors in the user authorization flow.

Finally, create a user model, and run the migrations:

Devise is now installed. Let’s run Cucumber again to see what is our progress:

root to: “home#index”

<p class=”notice”><%= notice %></p>
<p class=”alert”><%= alert %></p>

$ bundle exec rails generate devise User
$ bundle exec rails db:migrate

$ bundle exec cucumber
...

Scenario: Signing up
 Given I am on the homepage
 uninitialized constant HomeController (ActionController::RoutingEr-
ror)

 ./features/step_definitions/authentication_steps.rb:2:
 in `”I am on the homepage”’
 features/authentication.feature:8:in `Given I am on the homepage’
 And I fill in the sign up form
 And I confirm the email
 Then I should see that my account is confirmed

...

Add a route to our homepage so that Devise knows where to redirect registered

users:

Bootstrapping our Homepage

In the last section, we observed that the goals in our Cucumber feature require a

Homepage, with a Home controller.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

36

We will use Cucumber to guide us further in this process.

$ bundle exec cucuber

Given I am a registered user
 HomeControlle#index is missing a template for this request.

 request.formats: [“text/html”]
 request.variant: []

Based on the Cucumber error, we can deduce that we need to create a view for our

controller action.

Let’s start with an RSpec unit test for a home controller:

spec/controllers/home_controller_spec.rb

require “rails_helper”

RSpec.describe HomeController do
 let(:user) { instance_double(User) }

 before { log_in(user) }

 describe “GET #index” do
 it “returns status ok” do
 get :index

 expect(response.status).to be(200)
 end
 end

end

In the previous unit test, we have made use of the log_in helper to simulate a user
who is logged in in our controller unit specs. We need to define this helper in our
spec/rails_helper.rb test helper file.

First, load all the Devise test helpers, and a custom ControllerHelpers class.

class HomeController < ApplicationController

 def index
 end

end

First, create an empty Home controller:

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

37

module ControllerHelpers

 def log_in(user)
 warden = request.env[‘warden’]

 allow(warden).to receive(:authenticate!).and_return(user)
 allow(controller).to receive(:current_user).and_return(user)
 end

end

require “support/controller_helpers”

RSpec.configure do |config|

 config.include Warden::Test::Helpers
 config.include Devise::TestHelpers, :type => :controller
 config.include ControllerHelpers, :type => :controller

$ mkdir app/views/home
$ echo “<h1>Homepage</h1>” > app/views/home/index.html.erb

class ApplicatienController < ActionController::Base
 protect_from_forgery with: :exception

 before_action :authenticate_user!
end

This will protect all our pages from non-authenticated users and redirect them to the

sign up page.

When we run Cucumber again, we can see that the second step in the sign up flow
is completed and green. The only thing that’s missing now is the email verification
step.

Running Cucumber again, we can now see that the first step is green. Our home
page is ready. Let’s protect it from non-authenticated users.

Add the authenticate_user! filter to the application_controller.rb file:

Then, define the log_in helper in the controller helpers file:

With this, the log_in helper is available in all our controller specs.

Finally, let’s add a view for our homepage:

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

38

This is not a big surprise. By default, Devise does not send confirmation emails.

First, add :registerable, :confirmable to the app/models/user.rb:

Verifying Email Verification Steps

First, add the email_spec gem to the Gemfile.

group :development, :test do
 gem ‘email_spec’
end

Make sure this require is after you require cucumber/rails/world.
require ‘email_spec’ # add this line if you use spork
require ‘email_spec/cucumber’

devise :database_authenticatable, :registerable,
 :recoverable, :rememberable, :trackable, :validatable,
 :registerable, :confirmable

And I confirm the email
 Could not find email in the mailbox for tester@testdomain.test.
 Found the following emails:

 [] (EmailSpec::CouldNotFindEmailError)
 ./features/step_definitions/authentication_steps.rb:15:
 in `”I confirm the email”’
 features/authentication.feature:10:in `And I confirm the email’

Then I should see that my account is confirmed

Run bundle install to run the gem on your system.

To include the email helpers in the Cucumber environment, add the following to the

features/support/env.rb file:

Running the Cucumber steps again, we can see that the email spec steps are working,

but the verification step is not sent.

Create a new migration to add the new fields to the database:

bundle exec rails g migration add_confirmable_to_devise

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://github.com/email-spec/email-spec

39

Implementing the Log Out Behaviour

class AddConfirmableToDevise < ActiveRecord::Migration[5.1]
 def change
 add_column :users, :confirmation_token, :string
 add_column :users, :confirmed_at, :datetime
 add_column :users, :confirmation_sent_at, :datetime
 end

end

Add the following columns to the generated migration:

Change the config.reconfirmable settings in the config/initializers/devise.rb:

Change the user factory to generate confirmed users by default:

Finally, run the migrations to set up email confirmations:

When you run Cucumber, you will notice that the scenario for signing up is green.

The only scenario that is not green at this point should be the log out scenario. Let’s
add a log out link to the application:

Add the following snippet to the app/views/layouts/application.html.erb file:

config.reconfirmable = false

spec/factories/users.rb

FactoryBot.define do
 factory :user do
 confirmed_at Time.now
 end
end

bundle exec rails db:migrate

<% if user_signed_in? %>
 <%= link_to(‘Log out’, destroy_user_session_path, method: :delete) %>
<% end %>

In the above snippet, both the user_signed_in? and destroy_user_session_path help-

ers are defined by Devise. Everything should be green at this point.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

40

Let’s push our code to GitHub, and wait for Semaphore to turn green.

Congratulations! We now have a working authentication system in Rails. It’s time to

start building the unique functionality of our application.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

41

Developing a CRUD Application by

Following the BDD approach

CHAPTER 6

We’ve come a long way and covered the concept and theory behind behavior-driven

development, set up the tools, and mapped new concepts to a basic Rails application.

We are sure that you are eager to jump into the code and start following the BDD path

at this point.

However, pure theory is not enough for you to effectively bootstrap your BDD journey. A

sneak peek at a real world example will help you to close this gap.

We’re going to build a CRUD (short for create, read, update, delete) application that

helps the users keep track of their books. We will proceed in baby steps, writing our

application from outside-in.

Cucumber and RSpec will be our main tools. We will also cover the Git flow, give hints
how and when to communicate with your team, and how to make sure that a new fea-

ture is ready for shipping.

Introduction

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

42

Understanding the Application

Starting the Development of a New Feature

Defining our End Goals with Cucumber Features

Our goal is to write a Rails-based web application that can keep an inventory of your

books. Users of our application will be able to add, edit and remove books from their

inventories.

While the scope of this project is small, we will write it in a way that will make it easy

to maintain it and further develop it. The project should be able to grow, and to be

safely and continuously updated. We will keep this in mind while writing specs and

implementation, making sure that our tests are not crude and that they can cope with

changing requirements.

Every new feature starts from a green (all tests pass) point in the projects history.

You should keep your master branch on git green all the time to provide a safe start-

ing point for your team.

Let’s switch to the master branch and make sure that we have the latest revision on
our local development machine:

Behavior-driven development encourages us to start every new feature by defining
our end goals first. This helps us stay focused on the task at hand. Write just enough
code for the feature we are working on, while avoiding over-designing and trying to

do too many things at once.

Now, let’s create a new branch to make sure that our development doesn’t hinder the

productivity of our colleagues. We will call this branch book-inventory that reflects
the scope and our primary goal on this branch:

Every change in this chapter will be a part of this branch.

git checkout master
git pull

git checkout -b book-inventory

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

43

features/book_inventory.feature

Feature: Book Inventory

 In order to be able to keep track of my books
 As a user
 I should be able to keep an inventory of my books

features/book_inventory.feature

Feature: Book Inventory

 In order to be able to keep track of my books
 As a user
 I should be able to keep an inventory of my books

 Background:
 Given I am a registered user
 And I am logged in

With Cucumber we can make sure that our end goals are solidified with a high level
language and reputedly tested.

A Cucumber feature starts with a title and a comment, written in plain English. While

the original goal of this syntax design was to allow non-technical people to under-
stand the scenarios, this also helps us, developers, clarify our thoughts. By writing a

scenario in advance, we define the scope of the scenario and write the functionality
in plain English, effectively codifying the application design. This helps clarify our

thoughts and manage the work that’s ahead of us.

Let’s describe our book inventory with a Cucumber feature.

Now, we start to peel the layers of the feature. We ask ourselves what basic as-

sumptions we have about the users who are using this feature. For a start, we want

to allow only registered and signed in users to keep track of their books:

In Cucumber, we follow a Given/When/Then structure to represent our features. The

Given part describes our assumptions about the current state, the When part rep-

resents user actions, and the Then part describes what changes when the user takes

an action.

We will now describe our first interaction with the system — listing books in the
inventory.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

44

Scenario: Listing books in my inventory
 Given I have populated my inventory with several books
 When I visit the homepage
 Then I should see the list of my books

$ bundle exec cucumber

4 scenarios (1 undefined, 3 passed)
18 steps (1 skipped, 2 undefined, 15 passed)
0m0.758s

You can implement step definitions for undefined steps with these
snippets:

Given(“I have populated my inventory with several books”) do
 pending # Write code here that turns the phrase above into
 concrete actions
end

Then(“I should see the list of my books”) do
 pending # Write code here that turns the phrase above into
 concrete actions
end

features/step_definitions/book_inventory_steps.rb

Given(“I have populated my inventory with several books”) do
 pending # Write code here that turns the phrase above into
 concrete actions
end

Then(“I should see the list of my books”) do
 pending # Write code here that turns the phrase above into
 concrete actions
end

Defining Cucumber Steps and Making our Goals
Testable

Now that our first goal is set, let’s run Cucumber and follow its output in our imple-

mentation.

Neat! Cucumber tells us that we have set up our goals, but we have not defined their
meaning.

The first step is to copy the output from Cucumber into a Cucumber step definition.

Next step is to implement the step definitions and set up tests that verify the com-

pleteness of our new feature.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

45

features/step_definitions/book_inventory_steps.rb

Given(/^I have populated my inventory with several books$/) do
 FactoryBot.create(:book,
 :user => @registered_user,
 :name => “Don Quixote”,
 :author => “Miguel de Cervantes”)

 FactoryBot.create(:book,
 :user => @registered_user,
 :name => “Moby Dick”,
 :author => “Herman Melville”)
end

Then(/^I should see the list of my books$/) do
 expect(page).to have_content(“Don Quixote”)
 expect(page).to have_content(“Moby Dick”)
end

git add . && git commit -m “Describe book inventory listing” && git push

Don’t sweat if you don’t understand every part of the code bellow. Try to focus on

the flow and general principle of implementation.

Creating a commit creates a safe point of return. If our implementation goes astray,

we can safely delete everything and return to this revision in Git and try again with a

different approach.

Apart from creating a safe point of return, we also want to validate that our specs are

set up correctly. We should have RED tests on our CI at this point.

In the above snippet, we use FactoryBot to inject records into the database.

The @registered_user user comes from the Given I am a registered user step defini-
tion that we defined in the previous chapter while setting up a user account manage-

ment system.

This is a good point to stop, and create out first commit.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://github.com/thoughtbot/factory_bot

46

Cucumber-driven Implementation of the Book
Inventory Listing

We continue to use the output of Cucumber to guide us in the right direction.

Cucumber tells us that the book model, along with its factory, is not available in our

system. This is not a surprise. We still need a lot of code to complete our feature,

from data models to views and factories.

Rails offers a quick and easy way to generate a good chunk of our implementation by

scaffolding.

$ bundle exec cucumber features/book_inventory.feature

 Scenario: Listing books in my inventory
 Given I have populated my inventory with several books
 Factory not registered: book (ArgumentError)
 ./features/step_definitions/book_inventory_steps.rb:16:
 in `/^I have populated my inventory with several books$/’
 features/book_inventory.feature:12:
 in `Given I have populated my inventory with several books’
 When I visit the home page
 Then I should see the list of my books

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

47

We want to scaffold a book model that belongs to users. Every book will have a

name and an author. Let’s pass this information to Rails:

Let’s observe the changes in Cucumber:

bundle exec rails generate scaffold book user:belongs_to \
 name:string author:string
 --no-controller-specs \
 --no-view-specs \
 --no-helper-specs \
 --no-system-tests \
 --no-request-specs \
 --no-helper-specs

bundle exec rails db:migrate db:test:prepare

$ bundle exec cucumber features/book_inventory.feature

 Scenario: Listing books in my inventory
 # features/book_inventory.feature:11
 Given I have populated my inventory with several books
 # features/step_definitions/book_inventory_steps.rb:15
 When I visit the home page
 # features/step_definitions/book_inventory_steps.rb:20
 Then I should see the list of my books
 # features/step_definitions/book_inventory_steps.rb:24
 expected to find text “Don Quixote” in “Log out Homepage” (
 RSpec::Expectations::ExpectationNotMetError)
 ./features/step_definitions/book_inventory_steps.rb:25:in
 `/^I should see the list of my books$/’
 features/book_inventory.feature:14:in
 `Then I should see the list of my books’

The first two steps are passing. We have satisfied a good part of our goals just by
generating a book model.

Time to commit the changes.

git add .

git commit -m “Generate book scaffold”
git push

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

48

spec/controllers/books_controller_spec.rb

require “rails_helper”

RSpec.describe BooksController do

 let(:user) { instance_double(User) }

 before { log_in(user) }

 describe “GET #index” do
 let(:books) { [
 instance_double(Book),
 instance_double(Book)
] }

 before do
 allow(user).to receive(:books).and_return(books)

 get :index
 end

 it “looks up all books that belong to the current user” do
 expect(assigns(:books)).to eq(books)
 end
 end

end

Setting Up Unit Tests for the Book Inventory
Listing

The first two steps have passed, but we still need to deal with the third step. It
seems that our book is not listed on the page.

Before we continue, let’s set up specs for our controller and model so we can be sure

that individual units are working as expected. For unit testing we use RSpec.

Controllers are best tested with a mocking approach, since they tie many things to-

gether. The freedom you get from mocking should be used as an advantage in mold-

ing the controller method’s code to an ideal shape. This aids us to test the behavior

of our systems.

With this style of testing we focus on the interaction of our components instead of

focusing on the result of an operation. For example, we would write our tests for a
UserMailer as expect(UserMailer).to receive(:send_signup_email) instead of testing
whether the mail was successfully delivered. This is popularly called the London/
Interaction school of testing after London’s Extreme Tuesday Club where it became

popular.

We will start with the controller’s index action.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
http://www.extremetuesday.com/

49

In the above code block, we use the get method that is included in every controller

spec. Controller specs have helpers for other HTTP calls as well, covered in detail on

RSpec Rails documentation page.

RSpec tells us that users and books are not yet connected:

$ bundle exec rspec spec/controllers/books_controller_spec.rb

1) BooksController GET
 #index looks up all books that belong to the current user
 Failure/Error: allow(user).to receive(:books).and_return(books)
 the User class does not implement the instance method: books

We will use shoulda-matchers to write specs for the user and book models.

Running RSpec again validates our implementation. We now want to make sure that

our data layer and the associations are correct.

spec/models/book_spec.rb

require “rails_helper”

RSpec.describe Book, type: :model do

 # associations
 it { is_expected.to belong_to(:user) }

 # columns
 it { is_expected.to have_db_column(:name).of_type(:string) }
 it { is_expected.to have_db_column(:author).of_type(:string) }
 it { is_expected.to have_db_column(:created_at).of_type(:datetime) }
 it { is_expected.to have_db_column(:updated_at).of_type(:datetime) }

end

spec/models/user_spec.rb

RSpec.describe User, type: :model do

 it { is_expected.to have_many(:books).dependent(:delete_all) }

end

The tests for the model are ready. Let’s connect our users and books in our
application:

app/models/user.rb

has_many :books, :dependent => :delete_all

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://relishapp.com/rspec/rspec-rails/v/3-6/docs/controller-specs/controller-spec
https://github.com/thoughtbot/shoulda-matchers

50

Let’s write a minimal implementation of the index method that matches our
assumptions:

class BooksController < ApplicationController

 # ...

 def index
 @books = current_user.books
 end

 # ...

end

Running RSpec again tells us that every unit in our system passes our assumptions:

$ bundle exec rspec

Finished in 0.10461 seconds (files took 2.46 seconds to load)
16 examples, 0 failures

features/step_definitions/book_inventory_steps.rb

Then(/^I should see the list of my books$/) do
 puts page.body # Debug step: Display the HTML page.

 expect(page).to have_content(“Don Quixote”)
 expect(page).to have_content(“Moby Dick”)
end

$ bundle exec cucumber features/book_inventory.feature

 Scenario: Listing books in my inventory
 Given I have populated my inventory with several books
 When I visit the home page
 Then I should see the list of my books
 expected to find text “Don Quixote” in “Log out Homepage”
 (RSpec::Expectations::ExpectationNotMetError)
 ./features/step_definitions/book_inventory_steps.rb:25:
 in `/^I should see the list of my books$/’
 features/book_inventory.feature:14:
 in `Then I should see the list of my books’

Completing the Book Inventory Listing

Now that we confirmed that every unit works, we can go back to Cucumber.

We still hit the same error. This is a good point to introduce debug steps in the Cu-

cumber steps:

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

51

$ bundle exec cucumber features/book_inventory.feature

 Then I should see the list of my books
 # features/step_definitions/book_inventory_steps.rb:24

 <!DOCTYPE html>
 <html>
 <body>
 <h1>Hello</h1>
 </body>
 </html>

 expected to find text “Don Quixote” in “Hello”
 (RSpec::Expectations::ExpectationNotMetError)
 ./features/step_definitions/book_inventory_steps.rb:27:in
 `/^I should see the list of my books$/’
 features/book_inventory.feature:14:in
 `Then I should see the list of my books’

Run Cucumber again:

Rails.application.routes.draw do
 resources :books

 devise_for :users

 root to: “books#index”
end

$ bundle exec cucumber features/book_inventory.feature

1 scenario (1 passed)
5 steps (5 passed)
0m0.409s

rm app/controllers/home_controller.rb
rm spec/controllers/home_controller_spec.rb

At this point, the Home controller defined in the previous step becomes deprecated.
Delete it:

Now, we go back to delete the debug step and run Cucumber again:

The root_path is not directed to the book index controller. Let’s edit Rails routes:

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

52

$ bundle exec cucumber

Scenario: User Logs In
 Given I am a registered user
 And I visit the homepage
 When I fill in the login form
 Then I should be logged in
 expected to find text “Homepage” in “Log out Signed in successfully.”
 ./features/step_definitions/authentication_steps.rb:39:
 in `”I should be logged in”’
 features/authentication.feature:17:
 in `Then I should be logged in’

Failing Scenarios:
cucumber features/authentication.feature:13 # Scenario: User Logs In

4 scenarios (1 failed, 3 passed)
18 steps (1 failed, 17 passed)
0m0.843s

A green test! Let’s run the whole test suite just to make sure that everything passes:

features/step_definitions/authentication_steps.rb

Then(“I should be logged in”) do
 expect(page).to have_content(“Books”)
end

$ bundle exec cucumber

2 scenarios (2 passed)
9 steps (9 passed)
0m0.768s

Changing the root path broke our authentication step. Let’s rewrite the spec to follow
our new requirements:

Let’s make sure that everything works.

git add .
git commit -m “Implement book inventory listing”
git push

Everything is green! It’s time to make a commit.

We have now finished our first feature by following the BDD path.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

53

In the previous section, we have completed one full BDD cycle. Guided by high level

specs, we dug deep into unit tests, and finally to the implementation.

When you start with BDD for the first time, a lot of the steps seem cumbersome,
giving you the feeling that BDD drastically reduces productivity. However, this is very

far from the truth. As developers get used to BDD, we become more efficient with
defining Cucumber scenarios. Writing tests becomes second nature to most of us,
and the red -> green -> refactor cycle increases our productivity by making sure that

we can make changes in the code without breaking an existing feature.

We will continue to follow the BDD pattern to implement the rest of the book inven-

tory feature, but this time with an increased tempo.

Starting from the top, we define our goals for adding new books into the inventory.

Creating New Books

features/book_inventory.feature

Scenario: Adding a new book to the inventory
 When I submit a new book to my inventory
 Then I should see the new book in my inventory

features/step_definitions/book_inventory_steps.rb

When(/^I submit a new book to my inventory$/) do
 click_link “New Book”

 fill_in “book_name”, :with => “War and Peace”
 fill_in “book_author”, :with => “Leo Tolstoy”

 click_button “Create Book”
end

Then(/^I should see the new book in my inventory$/) do
 visit root_path

 expect(page).to have_content(“War and Peace”)
 expect(page).to have_content(“Leo Tolstoy”)
end

While defining step definitions, we heavily rely on Capybara to interact with the

browser. Commands like fill_in, click_link, and visit all come from here. There are
more commands available in the framework, ranging from simple UI interactions,

to more complex commands that allow you to run custom JavaScript on the page.
Keeping a browser tab open with Capybara’s documentation is an excellent way to
boost your Cucumber knowledge.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://github.com/teamcapybara/capybara

54

$ bundle exec cucumber

Scenario: Adding a new book to the inventory

 # features/book_inventory.feature:16

 When I submit a new book to my inventory

 # features/step_definitions/book_inventory_steps.rb:18

 Then I should see the new book in my inventory

 # features/step_definitions/book_inventory_steps.rb:27

 expected to find text “War and Peace” in “Log out Books Use Name

Author New Book” (RSpec::Expectations::ExpectationNotMetError)

 ./features/step_definitions/book_inventory_steps.rb:30:in

 `/^I should see the new book in my inventory$/’

 features/book_inventory.feature:18:in `

 Then I should see the new book in my inventory’

Failing Scenarios:

cucumber features/book_inventory.feature:16 # Scenario: Adding a new

book to the inventory

5 scenarios (1 failed, 4 passed)

22 steps (1 failed, 21 passed)

With the high level goals set in place, we dig deeper into individual units. This time,

we want to make sure that our controllers know how to create new books and attach

them to an existing user.

Let’s define a spec for the #create action, and make sure that a new book is created
and attached to the user.

spec/controllers/books_controller_spec.rb

describe “POST #create” do
 let(:book) { FactoryBot.build_stubbed(:book) }
 let(:params) { { :name => “Moby-Dick”, :author => “Herman Melville” } }

 before do
 allow(book).to receive(:save)
 allow(user).to receive_message_chain(:books, :build).and_return(book)
 end

 it “saves the book” do
 post :create, :params => { :book => params }

 expect(book).to have_received(:save)
 end
end

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

55

The implementation should look as follows:

app/controllers/books_controller.rb

def create
 @book = current_user.books.build(book_params)

 @book.save
end

Here’s the implementation:

context “when the book is succesfully saved” do
 before do
 allow(book).to receive(:save).and_return(true)

 post :create, :params => { :book => params }
 end

 it “redirects to the book show page” do
 expect(response).to redirect_to(book_path(book))
 end

 it “redirects to the book show page” do
 expect(flash[:notice]).to eq(“Book was successfully created.”)
 end
end

app/controllers/books_controller.rb

def create
 @book = current_user.books.build(book_params)

 if @book.save
 redirect_to @book, notice: ‘Book was successfully created.’
 end
end

Let’s now define what happens when the book creation succeeds. For this purpose,
we will introduce a new context that describes the state of the system after the save
action was called.

A good practice is to set up the context in a before step. In our case, the context is
that the save action returns true.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

56

Let’s now cover the negative path with another context:

The implementation should look as follows:

context “when the book can’t be saved” do
 before do
 allow(book).to receive(:save).and_return(false)

 post :create, :params => { :book => params }
 end

 it “redirects back to the new page” do
 expect(response).to render_template(:new)
 end
end

app/controllers/books_controller.rb

def create
 @book = current_user.books.build(book_params)

 if @book.save
 redirect_to @book, notice: ‘Book was successfully created.’
 else
 render :new
 end
end

As we are always attaching the book to the current user, we can edit the book form

and remove the now deprecated user input field:

It’s time to commit the new scenario:

remove the following lines from app/views/books/_form.html.erb

<div class=”field”>
 <%= form.label :user_id %>
 <%= form.text_field :user_id, id: :book_user_id %>
</div>

git add .
git commit -m “Add books to the inventory”
git push

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

57

We will now finish the remaining two features — editing a book and removing a
book from the book inventory.

This time, we will implement two scenarios in one BDD cycle. As developers get

used to the tooling they can get more ambitious and implement more scenarios in

one go, sometimes a whole feature can be defined before the implementation.

As usual, let’s start from the top and define the Cucumber scenarios:

features/book_inventory.feature

Scenario: Changing the name of a book
 Given I have a book in my inventory
 When I change the title of my book
 Then I should see the book with the new title in my inventory

Scenario: Removing a book from my inventory
 Given I have a book in my inventory
 When I remove a book from my inventory
 Then I should not see it listing in the inventory anymore

Updating and Deleting

Guided by Cucumber’s output, we construct the following step definitions:

features/step_definitions/book_inventory_steps.rb

Given(/^I have a book in my inventory$/) do
 FactoryBot.create(:book, :user => @registered_user, :name => “War and
Peace”, :author => “Leo Tolstoy”)
end

When(/^I change the title of my book$/) do
 visit root_path

 click_link “Edit”

 fill_in “book_name”, :with => “Guerra y paz”

 click_button “Update Book”
end

Then(/^I should see the book with the new title in my inventory$/) do
 visit root_path

 expect(page).to_not have_content(“War and Peace”)
 expect(page).to have_content(“Guerra y paz”)
end

When(/^I remove a book from my inventory$/) do
 visit root_path

 click_link “Destroy”
end

Then(/^I should not see it listing in the inventory anymore$/) do
 expect(page).to_not have_content(“War and Peace”)
end

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

58

spec/controllers/books_controller_spec.rb

describe “PATCH #update” do
 let(:book) { FactoryBot.build_stubbed(:book) }

 before do
 allow(Book).to receive(:find).and_return(book)
 allow(book).to receive(:update).and_return(true)
 end

 it “updates the book” do
 patch :update, :params => {
 :id => book.id,
 :book => { :name => “New Name” } }

 expect(book).to have_received(:update)
 end

 context “when the update succeds” do
 it “redirects to the book page” do
 patch :update, :params => {
 :id => book.id,
 :book => { :name => “New Name” } }

 expect(response).to redirect_to(book_path(book))
 end
 end

 context “when the update fails” do
 before do
 allow(book).to receive(:update).and_return(false)
 end

 it “renders the edit page again” do
 patch :update, :params => {
 :id => book.id,
 :book => { :name => “New Name” } }

 expect(response).to render_template(:edit)
 end
 end
end

At each step, we make sure to run our test suite, and verify that the controller is im-

plemented correctly. In our case, Rails already generated a scaffold that matches our

specification.

Remember, even if Rails auto-generated code for your feature, it is crucial to cover

it with tests. They help us set up a fast feedback loop and make it easy to introduce

changes in the behaviour.

Now that the high level goals are set, it’s time to descend into the units. First, we’ll

set up tests for the #update action, covering the positive and negative paths of
execution:

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

59

spec/controllers/books_controller_spec.rb

describe “DELETE #destroy” do
 let(:book) { FactoryBot.build_stubbed(:book) }

 before do
 allow(Book).to receive(:find).and_return(book)
 allow(book).to receive(:destroy)

 delete :destroy, :params => { :id => book.id }
 end

 it “deletes the book” do
 expect(book).to have_received(:destroy)
 end

 it “redirects to the index page” do
 expect(response).to redirect_to(books_path)
 end
end

When all unit tests are green, we can zoom out and return to our Cucumber feature.
Everything should be passing at this point.

git add .

git commit -m “Updating and deleting books from the inventory”
git push

Let’s commit and push:

Next, let’s cover the #destroy method with unit specs.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

60

All our initial goals are implemented. Now, we prepare a pull request and ask our col-

leagues for a review. This often forgotten step is crucial for delivering good software.

We will use the name of the feature, book inventory, to name our pull request.

When Semaphore reports that our build is green, we can safely merge our feature

branch, and automatically deploy it without worrying that we’ll break something in

production.

Finishing a Feature and Merging into Master

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://semaphoreci.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

61

Final Words

Congratulations, you’ve made it through the entire Rails Testing Handbook. We wrote this

book with the goal to help you write clean code and build maintainable

applications. Now it’s up to you — go make something awesome!

We would absolutely love to hear your feedback. What did you get out of reading

this book? How easy/hard was it to follow? What would you like to see us cover in
another book?

Please write to us at learn@semaphoreci.com.

Please share this book with your colleagues, friends and anyone who you think

might benefit from it.

Tell Us What You Think

Share this Book

1. RSpec documentation

2. Cucumber documentation

3. Capybara documentation

4. Semaphore Engineering Blog

5. Ruby Tutorials on Semaphore Community

Further Reading

About Semaphore

Semaphore helps you continuously test and deploy Ruby code at the push of a

button. It lets you automatically parallelize your Ruby tests, get feedback right

inside pull requests, and deploy more often in a unified workflow. Already trust-
ed by thousands of businesses around the globe, Semaphore can help your team

move faster too.

You can use a coupon code RUBYBOOK1 to get a $50 credit on a new

Semaphore account.

https://semaphoreci.com/?utm_source=ebook&utm_medium=pdflogo&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
mailto:learn%40semaphoreci.com?subject=
http://rspec.info/documentation/
https://cucumber.io/docs
http://www.rubydoc.info/github/teamcapybara/capybara/master
https://semaphoreci.com/blog/tags/engineering.html
https://semaphoreci.com/community/tags/ruby/?utm_source=ebook&utm_medium=pdf&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://semaphoreci.com/?utm_source=ebook&utm_medium=pdf&utm_campaign=hands_on_bdd_with_ruby_on_rails_5
https://semaphoreci.com/product/boosters/?utm_source=ebook&utm_medium=pdf&utm_campaign=hands_on_bdd_with_ruby_on_rails_5

