

A Complete Guide to Optimizing Slow Tests
semaphoreci.com

Professional software development is a feedback-based process — each new iteration
is informed by past results. Feedback is powered to a considerable degree by tests.

When tests slow development down, engineering teams lose momentum and become
frustrated, because they can’t meet their goals. A slow test suite puts the brakes on
CI/CD, making release and deployment more difficult. This often means that organiza-
tions can’t ship out products on time, and risk losing their competitive edge.

Choosing a scalable cloud platform like Semaphore is a great start. Semaphore offers
some features that are helpful in dealing with slow tests, which we will discuss later in
the article.

What’s wrong with waiting for tests?

Tolerating a slow test suite is like making the minimum credit card payment when you
could pay off your balance: by not dealing with it now you have a bit more cash in the
short term, but will have to pay much more down the road. It doesn’t make any sense,
but people do it because the costs are not immediately obvious. When faced with slow
tests, developers typically respond in one of three ways:

• Do something else and pay the cognitive cost for the context switch.
• Wait for results and lose focus on the problem at hand.
• Trudge on blindly without feedback.

Whatever happens, development speed falters due to the lack of timely feedback.

1

The complete guide for making your slow tests fast

Fortunately, we have a battle-tested plan that makes identifying and fixing slow tests
much easier.

The complete guide for making your slow tests fast
This guide consists of two parts:

• Part 1 lays down a framework to identify, prioritize and optimze the slow tests in
your suite.

• Part 2 deals with the most common sources of slow test performance and their
solutions.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 2

A framework for making slow tests fast

A framework for making slow tests fast
Dealing with slow tests requires both a concerted effort and a sound plan: 1. Identify:
which tests are bad performers. 2. Prioritize: pick a batch of the slowest tests. See if
there are some outliers that could be easy to fix. 3. Profile: zoom in and capturemetrics
to find out what your tests are doing behind the scenes. 4. Optimize: make the tests
snappy. 5. Repeat: go back to Step 1 and repeat the process until you test suite is in top
shape and your team is �

Let’s be clear. This is not a one-off endeavor. It is part of the lifecycle of the project. Over
time, tests slowdown as the codebase grows andmore tests are added. Therefore, you’ll
need to repeat the whole process at least once per quarter to be in good shape.

Step 1 — Identify high-value candidates

It can be hard to find the slowest tests when you have an extended CI/CD pipeline. Luck-
ily, Semaphore supports Test Reports, which provide an effective and consistent view of
your test suite in a CI/CD workflow.

There’s a little bit of setup required: you need to configure the test’s output to the JUnit
format, as well as add a few commands. The result is, however, well worth the effort. In
the detailed dashboard, you can spot problems, filter skipped tests, or order them by
duration.

Once you have a list of slow candidates to work on, you’re ready for the next step.

Step 2 — Maximize optimization effort vs benefit

Two factors come into play for deciding where to start: how much faster you can make
a test and how long you need to optimize it. We’re going to grab the low-hanging fruit
first.

In other words, we want to start working on tests that maximize:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 3

https://semaphoreci.com/product/test-reports
https://junit.org/junit5/
https://junit.org/junit5/

A framework for making slow tests fast

test runtime before - test runtime after
--

effort
The trouble is that the only certainty we have at this point is how long the test takes.
Everything else that we have is an estimation. Consider starting with a few easy-to-fix
tests or deleting ones that do not add value, even if there are slower candidates in your
suite. Once you have a good grasp of the process, you can go after slower tests that
require more substantial effort to optimize.

The testing pyramid can guide us here. The width of each level reflects the suggested
ratio of tests for each type relative to the whole suite.

The pyramid tells us that a good test suite should havemany unit tests, some integration
tests, and a few end-to-end or acceptance tests. In contrast, slow suites tend to bemore
top-level heavy, i.e. the opposite of what they should look like.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 4

A framework for making slow tests fast

The way forward lies in cutting the fat at the top, either by deleting some tests or moving
them downwards.

Maybe an example can help at this point. Imagine that we want to write an acceptance
test for an online music service:

Feature: Control playback

Scenario: play a song
Given there is no song playing
When user presses the play button
Then the song should start playing

Scenario: pause a song
Given a song is playing
When user presses the play button
Then the song should be paused

It’s a valuable test that checks a business-critical feature. You may be able to squeeze
some extra seconds of runtime but you can’t ever delete it.

At the other extreme, we have this:

Feature: Search for music

Scenario: search song cannot have an emoji symbol
Given the search box is selected
When user types an emoji

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 5

https://semaphoreci.com/blog/the-benefits-of-acceptance-testing
https://semaphoreci.com/blog/the-benefits-of-acceptance-testing

A framework for making slow tests fast

Then the user should be notified emojis are not supported
Here we have to ask ourselves why we are spinning up the entire application just to test
a search box. This is a perfect example of “low-hanging fruit”. We can quickly improve
our entire suite by rewriting this test as a unit test and moving it down the pyramid, as
shown below:

@Test
public void testSearchBoxShouldNotAcceptEmojis() {

SongSearch search = New SongSearch();

Exception exception = assertThrows(RuntimeException.class, () -> {
SongSearch("�");

});

String actualMessage = exception.getMessage();
String expectedMessage = "Sorry. Emojis are not supported";
assertTrue(actualMessage.contains(expectedMessage));

};

Step 3 — Debug and profile

Semaphore’s Test Reports will point you in the right direction for this stage. As you zoom
in onwhat’s going on, you’ll needmore information aboutwhat the tests are doing. A few
well-placed puts, inspect, or console.log can be enough to discover the cause
of the slowness.

Some problems, however, resist optimization and need heavier tools. For such cases,
you’ll need to use profilers to access metrics deep down in your code.

Profilers and debuggers come in many flavors and colors. You can be sure that your
language has more than one. A profiler records how much time each instruction takes,
letting you locate “hot spots” in your tests. Sometimes the results can be visually striking.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 6

A framework for making slow tests fast

Even the most general profiler tool will show you each statement’s accumulated time.
These are called statistical profilers and give you a panoramic view of what the test is
doing. An example of such a profiler is rbspy:

Other profilers, such as stackprof, trace everything that’s happening by line. These types
of profilers usually need some instrumentation to be configured, as shown below:

StackProf.run(mode: :cpu, out: 'tmp/stackprof.dump', raw: true) do
code you want to profile here

end

Steps 4 — Optimize

Now we’ve gotten down to it–how to actually optimize your tests. The method of opti-
mization depends on what’s causing the slow performance. Experience shows that slow
tests fit into one or more of these nine antipatterns:

1. Obsolete tests: tests not earning their keep in your test suite.
2. Mammoth-sized tests: tests that are too long, too heavy, and don’t take advan-

tage of parallelization.
3. Tightly-coupled tests: tests that are interconnected and cannot be executed in-

dependently. They pull chains of dependencies that are difficult to refactor and
debug.

4. Sleepy tests: tests that are peppered with sleep statements instead of proper
synchronization mechanisms.

5. I/O-bound tests: tests that heavily depend on slow I/O such as disk, database, or
network.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 7

https://rbspy.github.io/
https://github.com/tmm1/stackprof

A framework for making slow tests fast

6. Slow query tests: tests that make inefficient use of the database.
7. UI zealous tests: tests that always test through the UI even if there’re better ways

of achieving the same result, such as hitting an API instead.
8. UI completionist tests: these test the last corner of the UI and attempt to cover

every edge case.
9. UI prepper tests: tests that set up every test via the UI instead of using faster

out-of-band methods, making them slower and more brittle.

How to fix these problems it’s a tale for a future post. Subscribe so you don’t miss it!

Step 5 - Rinse and repeat

Like a diet, the first few iterations of your optimization effort will bring the most visible
results. Keep repeating the process until the total test time is shorter than the time it
takes to stretch your legs. Fasts tests will keep developers happy and onboard.

For reference, proper continuous integration can happen only when it takes 10 minutes
or less. So plan your tests to fit in that window.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 8

https://semaphoreci.com/newsletter
https://semaphoreci.com/blog/2017/03/02/what-is-proper-continuous-integration.html
https://semaphoreci.com/blog/2017/03/02/what-is-proper-continuous-integration.html

9 Ways To Make Slow Tests Faster

9 Ways To Make Slow Tests Faster
From developers to testers, from business analysts to management, everyone in your
organization must be committed to keeping tests in top condition. If you have an exten-
sive test suite, you’ll need a plan to focus the effort. Check out our 5-step framework for
identifying and optimizing tests if you’re not sure where to start.

Software development is modulated by the tools supporting it. Of these, testing is the
most widespread and has the largest impact. Keeping tests fast and responsive leads to
improved productivity, better code quality, and higher deployment frequency.

When tests slow down, development follows suit. Teams get frustrated when they can’t
meet their goals and organizations deploy as fast as they want. At Semaphore, we’ve
seen our fair share of tests and have identified the nine factors that slow tests down.

How fast should tests be?

Tests are consumed first and foremost by developers, who run them first on their ma-
chines before committing changes. Fast tests keep developers productive, enabling
them to maintain the creative focus that’s so important for problem-solving.

By that measure, a test suite taking longer than the time it takes to stretch your legs and
grab a cup of coffee is too slow.

Developers should be able to run tests locally — at least the part of the suite directly re-
lated to the code they’re working on. A speedy and easy-to-use test suite will encourage
developers to run tests before, during, and after their changes.

Tests also affect the speed of CI/CD. The longer they take, the slower your pipeline
is. This is important because the pipeline dictates how often you can release. A slow
pipeline disrupts the development cycle.

To bemore accurate, you’re not really doing continuous integration unless your pipeline
takes less than 10 minutes. And because tests run in the pipeline, they should fit com-
fortably in that 10-minute window.

Making slow tests fast again

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 9

https://semaphoreci.com/blog/slow-tests-strategy
https://semaphoreci.com/blog/slow-tests-strategy
https://semaphoreci.com/cicd
https://semaphoreci.com/blog/cicd-pipeline

9 Ways To Make Slow Tests Faster

How do we fix slow tests? And how do we accelerate a CI/CD pipeline? Here are the nine
most common performance problems and their solutions:

1. My tests are too large: break them up.
2. My tests have multiple dependencies: isolate tests with stubbing or mocking.
3. My tests are tightly-coupled: refactor them to make them independent.
4. I have obsolete tests: remove dead code and outdated tests.
5. My tests use sleep and wait: replace sleep statements with synchronization

mechanisms.
6. My tests use a database: make sure queries are optimized.
7. My tests always go through the UI: reduce UI interactions. For example, if an API

is available, test that instead.
8. I set up my tests through the UI: use out-of-band channels for setting up and tear-

ing down tests.
9. My tests cover every edge case in the UI: focus only on the most critical paths for

your users.

Breaking up large tests

• Problem: large tests take a long time to complete, are hard to maintain, and can-
not take advantage of concurrency.

• Solution: divide et impera. Split the test suite into small units and configure parallel
jobs in your pipeline.

Long, single-threaded tests do not benefit from themany coresmodernmachines come
with. Let’s take a look at the following pseudocode, which tests one function in three
different ways:

// tests 1 to 3
setup()
value1 = function(input1)
assert value1 == output1
cleanup()

setup()
value2 = function(input2)
assert value2 == output2
cleanup()

setup()
value3 = function(input3)
assert value3 == output3
cleanup()
Breaking this test up could make it up to 3 times faster. Depending on your testing
solution, it might be as simple as distributing the code between three files and setting

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 10

9 Ways To Make Slow Tests Faster

up your framework to use all the available CPUs.

Test1 Test2 Test3

setup() setup() setup()
value1 =
function(input1)

value2 =
function(input2)

value3 =
function(input3)

assert value1 ==
output1

assert value2 ==
output2

assert value3 ==
output3

cleanup() cleanup() cleanup()

Parallelization, however, isn’t without dangers. Tests running in sequence do take longer
but are easier to wrap one’s head around. Concurrency, on the other hand, is complex.
It may produce unexpected results if tests have side effects and are not isolated. A
small mistake can lead to hard-to-debug problems, race conditions, and flaky tests.

Parallel jobs in CI/CD

If you take away only one thing in this whole article, let it be this: parallelization has
the most immediate benefits with the least effort — mainly when applied to the CI/CD
pipeline—despite the aforementionedhurdles in its implementation. Onceparallelizing
ceases to be cost-effective, continue with the rest of the recommendations in the article.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 11

https://semaphoreci.com/community/tutorials/how-to-deal-with-and-eliminate-flaky-tests
https://semaphoreci.com/blog/revving-up-continuous-integration-with-parallel-testing

9 Ways To Make Slow Tests Faster

Dividing tests opens up a whole new level of optimization. Cloud services like
Semaphore allow one to scale up continuous integration and delivery beyond one
machine.

Make tests independently-runnable

• Problem: tightly-coupled tests sabotage speed and make refactoring difficult.
• Solution: decouple components so they are independently testable. Don’t break
test encapsulation.

Designing testable code means building small, isolated, and decoupled components.
We’ve seen that parallelization can help us reduce testing runtime. Separating compo-
nents is a necessary part of this process.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 12

9 Ways To Make Slow Tests Faster

Tests add value to the extent that theymaintain their distance from the implementation.
When they are too tightly-coupled , they break more easily and for the wrong reasons.
A test should validate an external behavior, not how it works internally. Tests that are
too coupled to the code hinder refactoring.

Imagine that we have a class representing a shopping cart, like the one shown below:

class ShoppingCart {

Item _lastItemAdded;
Item[] _cartContents;
float _totalSum;

function AddItem(Item) {
_lastItemAdded = Item;
_cartContents.Add(Item);
_totalSum =+ Item.cost;

}

function getTotal() {
return _totalSum;

}

function getItem(index) {
return _cartContents[index];

}
}

And we write the following test:

// test item added
item = new Item("bottle", 10.50);
cart = new ShoppingCart();
cart.AddItem(item);

assert _totalSum == 10.50;
assert _lastItemAdded.name == "bottle";
assert _cartContents.toString() == "bottle-10.50";

The test knows too much about the internal details of the tested class. It’s breaking
encapsulation, making it impossible to refactor the class without breaking the test:

• The test checks on lastItemAdded instead of using the getter.
• The test accesses private attributes like _cartContents.
• The test depends on the manner in which objects are serialized.

Think about this: you want the test to fail only if the behavior of the public interface
changes. So, let’s make tests all about the behavior.

// test item added
item = new Item("bottle", 10.50);
cart = new ShoppingCart();

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 13

9 Ways To Make Slow Tests Faster

cart.AddItem(item);

assert cart.getTotal() == 10.50;
assert cart.getItem[0].name == "bottle";
assert cart.getItem[0].price == 10.50;

Branch by abstraction

Large-scale refactoring doesn’t take place overnight — it’s going to take a few weeks or
even months. Gradual change can be achieved using branching by abstraction. This
technique allows you to continue shipping releases while change takes place.

Branch by abstraction starts by picking a component to decouple from the rest of the
codebase:

Next, wrap the component in an abstraction layer and redirect all calls to the new layer.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 14

9 Ways To Make Slow Tests Faster

The abstraction layer hides the implementation details. If the component is big and
cumbersome, create a copy andwork on it until it’s ready. Then, refactor the component
until it’s independently testable.

Once refactoring is done, switch the abstraction layer to the new implementation.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 15

9 Ways To Make Slow Tests Faster

Making tests self-contained

• Problem: external dependencies slow down tests and add uncertainty to results.
• Solution: replace external components with test doubles, stubs, and mocks. Re-
move services, databases, and APIs from the equation to make unit tests self-
contained.

A mock is a simplified instance of a component that responds like the real thing, at least
for the scope of the test in question. It doesn’t need to implement the full range of
responses, only those deemed relevant. For example, instead of requesting actual data
from an API endpoint like this:

function precipitation
weather = fetch 'https://api.openweathermap.org/data'
return weather.precipitation

end function

function leave_the_house
if precipitation() > 0 then

return "Don't forget your umbrella. It's raining!"
else

return "Enjoy the sun."
end if

end function

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 16

9 Ways To Make Slow Tests Faster

We could replace the real precipitation function with a canned response. This
would make the test self-contained and, thus, more reliable. This also avoid unintended
abuse on the API. As long as the interface is maintained, the test code is still valid.

// Override the precipitation function
function precipitation()

return 10
end function

message = leave_the_house()
assert message == "Don't forget your umbrella. It's raining!"
Of course, now that we’re decoupled from the actual API, any breaking changes will not
be spotted by the test. We could implement a separate test that periodically polls the
API and validates the result to mitigate risks. This type of test is called contract testing.

Mocking, stubbing, and test doubles allow you to run a piece of code in isolation. In the
process, youmake tests much faster because you are not constrained by the limitations
of the environment. Without them, you get inconsistent results as your tests depend on
external components that are likely out of your control.

To help you isolate tests, Semaphore enforces a clean environment for each job.

Remove obsolete tests and dead code

• Problem: dead code and obsolete tests waste time and contribute to the project’s
technical debt.

• Solution: do some house cleaning. Remove all obsolete code from your project.

Don’t feel anxious about deleting code and tests. Tests get outdated when the tested
code goes out of circulation. Obsolete tests are part of the technical debt a development
team has to deal with sooner or later.

Obsolete tests are not necessarily the only ones that deserve deletion. Sometimes a test
covers working code, like in the example below. However, if the test is trivial and doesn’t
give much value, it shouldn’t be in your suite. In such cases, it is often better to remove
it.

person = new Person()
person.setName("John")
name = person.getName()
assert name == "John"
How to delete a test

It’s safer to remove obsolete tests in two stages:

0. Run test suite locally and verify ALL PASS
1. Remove the tested code.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 17

https://martinfowler.com/bliki/contracttest.html

9 Ways To Make Slow Tests Faster

2. If nothing breaks, delete the test.

Tests should be falsifiable. In other words, removing the code should make the test fail
— if it doesn’t, what were you testing?

Once we’re sure there wasn’t any collateral damage from deleting the code, let’s remove
the test.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 18

9 Ways To Make Slow Tests Faster

Eliminate wait/sleep statements from tests

• Problem: wait statements slow down the test suite and hide a swath of design
problems.

• Solution: use proper synchronization mechanisms.

The presence of sleep statements in a test shows that the developer needed to wait for
something and didn’t know how long. So, they set a fixed timer that made the test work.

Sleep statements are usually found between a function call and it’s verifying assertion:

output1 = my_async_function(parameters)
// wait 2000 milliseconds
wait(2000)
assert(output1 == value1)

While this may work. It’s brittle and unpolished. Why wait two seconds? Because it
worked on the developer’s machine? Instead of sleeping, you should use some kind of
polling or synchronization mechanism to keep the wait to the minimum. In JavaScript,
for instance, await/async solves the problem:

async function my_async_function() {
// function definition

}

output1 = await my_async_function()
assert(output1 == value1)

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 19

9 Ways To Make Slow Tests Faster

Many languages also have callbacks to chain actions:

function callback(output) {
assert(output == value)

}

function my_function(callback) {
// function definition

callback(output)
}

my_async_function(callback)

In both cases, the most correct implementation would also include some form of time-
out to handle unresponsive endpoints.

Frequently, waits are added as a workaround for a flaky test — a test that succeeds and
fails at times for no apparent reason. Waiting, however, is not a correct solution; it just
hides the problem.

Waiting for services

Sleep statements should be replaced with proper polling or messaging to determine
when the needed resource is ready. This works, and in some cases it may be the only
alternative you have:

while port not open
sleep(100)

end while

// test that needs port available...
But when you can, it’s much better to open the port and pass the test function as a
callback instead. This will chain the actions without needing any explicit waits.

function run_test()
// the port is open, run your test here

end function

connect(port, run_test)

Optimize database queries in tests

• Problem: suboptimal database queries waste resources and slow down tests.
• Solution: profile your queries and optimize them.

When the test calls for a database query, first check if you can replace it with a prefilled
dataset instead. The bulk of your unit tests should not depend on a database. It is
inefficient and usually unnecessary.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 20

https://semaphoreci.com/community/tutorials/how-to-deal-with-and-eliminate-flaky-tests

9 Ways To Make Slow Tests Faster

How do you mock database calls? Imagine we want to count all users in a table. We
have a function that connects to the database and issues a query.

import mysql

function countUsers(host, port, user, password)
connection = new mysql(host, port, user, password)
users = connection.exec("SELECT USERNAME FROM USERTABLE")
return users.count()

end function

print countUsers('localhost', 3306, 'dbuser', 'dbpassword')
While straightforward, it’s hard to mock. You would need to write a MySQL replacement
that accepts the same parameters and behaves similarly enough to be useful. A better
alternative is to use inversion of control. This pattern involves injecting code into the
tested function to allow more control.

function countUsers(dbobject)
if dbobject.connected is false

throw "database not connected"
end if

users = dbobject.exec("SELECT USERNAME FROM USERTABLE")
return users.count()

end function
Here we are sending a database object as a parameter, making the function call a bit
more complex:

import mysql

connection = new mysql(host, port, user, password)
print countUsers(connection)
Testing is more straightforward, however:

Class MockedDB
// always connected

connected = true

// returns a canned answer, no db connection required
function exec

return ["Mary", "Jane", "Smith"]
end function

end class

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 21

9 Ways To Make Slow Tests Faster

usercount = countUsers(MockedDB)
assert usercount == 3
Querying a real database

Mocks don’t always work. You’ll find that an actual database is sometimes needed, espe-
cially during integration and end-to-end testing. Semaphore provides popular database
services out-of-the-box that you can quickly spin up in your test environment.

When it comes to using a database, there are a number of classic slip-ups. Perhaps the
most common is theN+1 problem, which stems from combining loops and SQL queries.

users = db.exec("SELECT id, name FROM Users")
foreach user in users

email = db.exec("SELECT email FROM Emails
WHERE userid = $user['id']")

body = "Hello $user['name']"
sendEmail(body, email)

end foreach
What’s the problem with this? At first glance, there’s nothing wrong: get all users from
theUsers table, then their email address from a different table. But, think of howmany
queries are hitting the database: one to get all users and onemore for every user found.
If you have 10,000 users, that’s 10,001 queries.

Databases, SQL databases in particular, are designed to work in sets. They hate iter-
ations because every query has a large upfront processing cost. We can reduce the
10,001 queries to just 1 by requesting all the records in one go and taking advantage of
the JOIN clause:

users = db.exec("SELECT id, name, email FROM Users
JOIN Emails ON Users.id = Emails.userid")

foreach user in users
body = "Hello $user['name']"
sendEmail(body, $user['email'])

end foreach
Selecting all columns

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 22

https://docs.semaphoreci.com/ci-cd-environment/sem-service-managing-databases-and-services-on-linux/
https://docs.semaphoreci.com/ci-cd-environment/sem-service-managing-databases-and-services-on-linux/

9 Ways To Make Slow Tests Faster

Selecting all columns is another easy-to-make mistake. The query SELECT * presents
several problems:

• Retrieves unneeded columns, causing more I/O and memory usage.
• Negates some of the benefits provided by existing indexes.
• Breaks more easily if column order or column name changes when used in JOINs.

So, instead of selecting all columns:

SELECT *
FROM Users U
JOIN Orders O on O.userid = O.id

You should be more explicit and ask only for the data you need:

SELECT U.id, U.name, O.shipping_address
FROM Users U
JOIN Orders O on O.userid = O.id

Batching operations

Batching is the ability to change multiple records in a single transaction. Reaching data
speedsmuch higher than regular transactions, batching is an excellent way of initializing
a test. Thus, instead of inserting one row at a time like this:

INSERT INTO founders (name, surname) values ('John', 'Romero');
INSERT INTO founders (name, surname) values ('John', 'Carmack');
INSERT INTO founders (name, surname) values ('Tom', 'Hall');

Consider bundling the values into a single statement:

INSERT INTO founders (name, surname) values
('John', 'Romero'), ('John', 'Carmack'), ('Tom', 'Hall');

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 23

9 Ways To Make Slow Tests Faster

Similarly useful devices exist when setting up a test through an ORM. Take this RSpec
example:

before(:each) do
@user = User.create(name: "Adrian", surname: "Carmack")

end

after(:each) do
@user.destroy

end

context 'model test' do
subject { @user }
it { should validate_presence_of(:name) }
it { should validate_presence_of(:surname) }
it { should have_many(:projects) }

end

It takes a bit of knowledge of Ruby to understand that before(:each) and af-
ter(:each) are not the optimal choices here. The test creates and deletes a user for
every it statement. Since none of the tests mutate data, you can initialize the dataset
once with before(:all) and after(all), which run only once at the beginning
and end of the test. Consider loading up the sample data once and reusing it in your
tests whenever possible.

Test the API instead of the UI

• Problem: too many UI tests reduce the performance of the suite.
• Solution: avoid the UI when there are better testable targets such as an API end-
point.

An API is designed for programmatic access and it will always be a better fit for running
tests than theUI. This doesn’tmean that theUI should not be tested, only that if you have
the choice of testing via API or via UI, the former is easier and less resource-intensive.

The following example shows a basic UI test. It visits a URL, does a search, and verifies
the resulting value:

driver = new ChromeDriver();
driver.get("http://myapp/users");

// search for a user
driver.findElement(By.linkText("User")).sendKeys("John");
driver.findElement(By.linkText("Search")).click();

// validate result
firstTableCell = driver.findElement(

By.Xpath("//table/tbody/tr[0]/td[0]"));
assertEquals(firstTableCell.getText(), "John")

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 24

9 Ways To Make Slow Tests Faster

Even such a simple test requires a lot: we need to open a browser, wait for the page
to render, and simulate all the interactions. Not to mention that the entire application
must be up and running before we even begin.

Compare that with a more subcutaneous test pinging the same API endpoint that the
application consumes.

request = fetch("http://myapi/v1/users$?name=John");

assertEquals(request.status(), 200);
assertEquals(request.header.contentType, "application/json");
assertEquals(request.body.users.name, "John");

Here we’re testing that the API behaves according to the spec, and achieving the same
thing as the test thatwent through theUI. This kind of test scales upmuchbetter because
it uses fewer resources and can be more easily parallelized.

Reduce UI interactions during setup

• Problem: setting up tests using the UI is suboptimal.
• Solution: prepare the test out-of-band and only go through the UI for elements
under test.

Since UI tests take more time to run andmore effort to maintain, we need to keep them
lightweight. If you want to test the checkout button, test the checkout button and noth-
ing else. You don’t need the UI to fill the shopping cart with products. You can do it
behind the scenes by populating the database or directly calling an API.

Of course, you still need to do end-to-end testing, and it is more approachable with
a BDD framework such as Cucumber or JBehave. Test cases can be written down us-
ing Gherkin’s structured Given-When-Then pattern, which helps to make themmore
streamlined:

Feature: Checkout cart
User must be able to buy their products

Scenario: Successful purchase
Given cart has products
When I press the checkout button
Then my order should be accepted

Cheating in the test

The scenario above calls for a shopping cart with products. This is a given precondition,
but the test doesn’t care how the cart was filled. We can “cheat” and prefill the cart
directly with a database query, which means that we don’t have to go through the UI.
The point here is that not everything needs to go through the UI.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 25

https://martinfowler.com/bliki/SubcutaneousTest.html
https://semaphoreci.com/blog/the-benefits-of-acceptance-testing

9 Ways To Make Slow Tests Faster

@Given("cart has products")
public void cart_has_products() {

stmt.executeUpdate("INSERT INTO Cart (user_id,product_id)
VALUES (1,1000), (1,2000), (1, 3000)");

}

In comparison, both the When and Then clauses need to deal with the UI since they are
testing it in order to validate the checkout experience. Under the hood, each clause in
the test is implemented using a framework such as Selenium:

public class StepDefinitions {

private WebDriver driver = new ChromeDriver();

@When("I press the checkout button")
public void i_click_checkout() {

driver.findElement(By.linkText("Checkout")).click();
}

@Then("my order should be accepted")
public void i_should_get_order_number() {

assertNotNull(driver.findElement(
By.xpath("//*[matches(@id, 'Your order number is \d+')]")));

}

}

Testing frameworks have ways of reusing scenarios and conditions. Cucumber, for in-
stance, has backgrounds. Time spent optimizing UI interactions is usually time well-
spent.

Keep UI tests focused on the happy paths

• Problem: trying to test every corner of the UI.
• Solution: be clever about which cases to test. You don’t need to try every possible
combination.

By now, you may have realized that the motto for UI and end-to-end testing is “keep it
short, keep it valuable”. Each test should earn its keep.

Being too strict about the UI is not a good idea, as it makes it easy to break a test by
moving a button or changing a string. You should be able to make cosmetic changes
and improvements without breaking your end-to-end test layer.

That doesn’t mean that UI tests aren’t valuable. We just need to be picky about which
paths to test. As an example, you most definitely want to ensure that new users can
create an account or that existing users can log in. Conversely, testing what happens
when a user enters a non-Unicode character into a search box is better served by a unit
test.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 26

https://cucumber.io/docs/gherkin/reference/#background

9 Ways To Make Slow Tests Faster

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 27

Don’t neglect your tests

There are no hard and fast rules. Finding what works depends entirely on the nature of
your application. Think about the primary user experience (the happy paths) and forget
about edge cases — at least where UI testing is concerned.

Don’t neglect your tests
The importance of responsive tests cannot be overstated. Tests are code and should be
treated with the same care. Time must be allocated to upkeep them because the speed
of the test suite directly correlates to how often you can release software. A test suite
will gradually slow down unless it is dutifully maintained, dragging the team’s morale
down and making your organization miss deadlines. Don’t let that happen!

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 28

Don’t neglect your tests

© 2022 Rendered Text. All rights reserved.

This work is licensed under Creative Commmons Attribution-NonCommercial-
NoDerivatives 4.0 International. To view a copy of this license, visit https://creati
vecommons.org/licenses/by-nc-nd/4.0

The source text is open source: https://github.com/semaphoreci/papers

Originally published at: https://semaphoreci.com/cicd

Authors: Tomas Fernandez

Editor: Marko Anastasov

Reviewed by: Dan Ackerson

Build date: Sep 2022

Revision: 045d7b6

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 29

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://github.com/semaphoreci/papers
https://semaphoreci.com/cicd
https://twitter.com/TomFernBlog
https://twitter.com/markoa
https://www.linkedin.com/in/danackerson/

	The complete guide for making your slow tests fast
	A framework for making slow tests fast
	Step 1 — Identify high-value candidates
	Step 2 — Maximize optimization effort vs benefit
	Step 3 — Debug and profile
	Steps 4 — Optimize
	Step 5 - Rinse and repeat

	9 Ways To Make Slow Tests Faster
	Breaking up large tests
	Make tests independently-runnable
	Making tests self-contained
	Remove obsolete tests and dead code
	Eliminate wait/sleep statements from tests
	Optimize database queries in tests
	Test the API instead of the UI
	Reduce UI interactions during setup
	Keep UI tests focused on the happy paths

	Don't neglect your tests

