
Dockerizing a Node.js Web Application
semaphoreci.com

If you’ve ever developed anything that needs to ‘live’ somewhere besides your local ma-
chine, you know that getting an application up and running on a different machine is
no simple task. There are countless considerations to be had, from the very basics of
“how do I get my environment variables set” to which runtimes you’ll need and which
dependencies those will rely on, not to mention the need to automate the process. It’s
simply not feasible for software teams to rely on a manual deploy process anymore.

A number of technologies have sought to solve this problem of differing environments,
automation, and deployment configuration, but themost well-known and perhapsmost
notable attempt in recent years is Docker.

By the end of this tutorial you should be able to:

• understand what Docker is and what it does
• create a simple Dockerfile
• run a Node.js application using Docker
• use Continuous Integration to automatically build and test Docker containers

What is Docker, Anyway?
Docker’s homepage describes Docker as follows:

“Docker is an open platform for building, shipping and running distributed
applications. It gives programmers, development teams and operations en-
gineers the common toolbox they need to take advantage of the distributed
and networked nature of modern applications.”

Put differently, Docker is an abstraction on top of low-level operating system tools that
allows you to run one or more containerized processes or applications within one or
more virtualized Linux instances.

Advantages of Using Docker
Before we dive in, it’s important to stress the potential usefulness of Docker in your
software development workflow. It’s not a “silver bullet”, but it can be hugely helpful in

1

https://www.docker.com/
https://semaphoreci.com/continuous-integration

Prerequisites

certain cases. Note the many potential benefits it can bring, including:

• Rapid application deployment
• Portability across machines
• Version control and component reuse
• Sharing of images/dockerfiles
• Lightweight footprint and minimal overhead
• Simplified maintenance

Prerequisites
Before you begin this tutorial, ensure the following is installed to your system:

• Node.js (available here or via nvm)
• Docker
• A git repository of your own, to track changes

You can find all the example code in this post in the dockerizing-nodejs repository.

TomFern / dockerizing-nodejs

Create Repository
Create an empty repository to host your code:

1. Go to GitHub and sign up.
2. Use the New button under Repositories to create a new repository.
3. In Add .gitignore, select Node.
4. Create the repository.
5. Clone the repository to your work machine.

Directory Structure
We’ll be using a basic Express application as our example Node.js application to run
in our Docker container. To keep things moving, we’ll use Express’s scaffolding tool to
generate our directory structure and basic files.

$ npx express-generator --no-view addressbook
$ cd addressbook
$ npm install

This should have created a number of files in your directory, including bin and routes
directories. Make sure to run npm install so that npm can get all of your Node.js
modules set up and ready to use.

We’ll write an addressbook API that stores people’s names in a database.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 2

https://nodejs.org/
https://github.com/creationix/nvm
https://docker.com/
https://help.github.com/articles/create-a-repo/
https://github.com/TomFern/dockerizing-nodejs
https://github.com/TomFern
https://github.com/TomFern/dockerizing-nodejs
https://github.com
http://expressjs.com/

Directory Structure

Add a Route

Routes are how we handle each HTTP request. The express starter project has a few
example routes and we’ll add one more to handle our API calls.

• Create a new file called routes/persons.js with the following content:

// persons.js

var express = require('express');
var router = express.Router();
var db = require('../database');

router.get("/all", function(req, res) {
db.Person.findAll()

.then(persons => {
res.status(200).send(JSON.stringify(persons));

})
.catch(err => {

res.status(500).send(JSON.stringify(err));
});

});

router.get("/:id", function(req, res) {
db.Person.findByPk(req.params.id)

.then(person => {
res.status(200).send(JSON.stringify(person));

})
.catch(err => {

res.status(500).send(JSON.stringify(err));
});

});

router.put("/", function(req, res) {
db.Person.create({

firstName: req.body.firstName,
lastName: req.body.lastName,
id: req.body.id
})
.then(person => {

res.status(200).send(JSON.stringify(person));
})
.catch(err => {

res.status(500).send(JSON.stringify(err));
});

});

router.delete("/:id", function(req, res) {
db.Person.destroy({

where: {
id: req.params.id

}
})
.then(() => {

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 3

Configuring the Database

res.status(200).send();
})
.catch(err => {

res.status(500).send(JSON.stringify(err));
});

});

module.exports = router;

This file implements all the API methods our application will support, we can:

• Get all persons
• Create a person
• Get a single person by id
• Delete a person

All the routes return the person information encoded in JSON.

Configuring the Database
All person routes require a database to store the data. We’ll use a PostgreSQL database
to keep our contact details.

1. Install the PostgreSQL node driver and sequelize ORM:

$ npm install --save pg sequelize
Sequelize handles all our SQL code for us, it will also create the initial tables on the
database.

1. Create a file called database.js

// database.js

const Sequelize = require('sequelize');
const sequelize = new Sequelize(process.env.DB_SCHEMA || 'postgres',

process.env.DB_USER || 'postgres',
process.env.DB_PASSWORD || '',
{

host: process.env.DB_HOST || 'localhost',
port: process.env.DB_PORT || 5432,
dialect: 'postgres',
dialectOptions: {

ssl: process.env.DB_SSL == "true"
}

});
const Person = sequelize.define('Person', {

firstName: {
type: Sequelize.STRING,
allowNull: false

},
lastName: {

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 4

https://www.npmjs.com/package/pg
https://sequelize.org/

Configuring the Database

type: Sequelize.STRING,
allowNull: true

},
});
module.exports = {

sequelize: sequelize,
Person: Person

};

The database file defines the connection parameters to PostgreSQL and the person
model. The model has only two fields: firstName and lastName, you can add more
fields if you feel like experimenting. Check the sequelize model doc for more details.

1. Create a new file for database migration at bin/migrate.js:

// bin/migrate.js

var db = require('../database.js');
db.sequelize.sync();

Let’s add a test for the database. We’ll use Jest, a JavaScript testing library.

1. Install Jest:

$ npm install --save-dev jest

1. Create a new file called database.test.js:

const db = require('./database');

beforeAll(async () => {
await db.sequelize.sync({ force: true });

});

test('create person', async () => {
expect.assertions(1);
const person = await db.Person.create({

id: 1,
firstName: 'Bobbie',
lastName: 'Draper'

});
expect(person.id).toEqual(1);

});

test('get person', async () => {
expect.assertions(2);
const person = await db.Person.findByPk(1);
expect(person.firstName).toEqual('Bobbie');
expect(person.lastName).toEqual('Draper');

});

test('delete person', async () => {
expect.assertions(1);

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 5

https://sequelize.org/master/class/lib/model.js~Model.html
https://jestjs.io/

Start the Application

await db.Person.destroy({
where: {

id: 1
}

});
const person = await db.Person.findByPk(1);
expect(person).toBeNull();

});

afterAll(async () => {
await db.sequelize.close();

});

1. Edit package.json and add the following lines in the scripts section:

"scripts": {
"start": "node ./bin/www",
"test": "jest",
"migrate": "node ./bin/migrate.js"

},

The test code goes through all the basic database operations:

• Create an initial table with sync()
• Create a person.
• Get the person.
• Delete the person.

Start the Application
We’re almost ready to start the application for the first time. We only need to add the
new routes to the main file: app.js

1. Create a persons router object near to the index router:

// app.js

. . .

var indexRouter = require('./routes/index');

// add the following line near the indexRouter
var personsRouter = require('./routes/persons');

. . .

1. Add the persons router object to the application near to the other app.use()
lines:

// app.js

. . .

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 6

Setting Up PM2

app.use('/', indexRouter);

// add the following line near app.use indexRouter
app.use('/persons', personsRouter);

. . .

1. To start the application:

$ npm start

Check the new application on http://localhost:3000

If you go to http://localhost:3000/persons/all you’ll see a connection error message.

That’s to be expected as we didn’t provide the application any database to work with.

We’ll use Docker to run our database in the following sections.

Setting Up PM2
While running our Node.js application with node bin/www is fine for most cases, we
want a more robust solution to keep everything running smoothly in production. It’s
recommended to use pm2, since you get a lot of tunable features.

We can’t go too deep into how pm2 works or how to use it, but we will create a basic
processes.json file that pm2 can use to run our application in production.

$ npm install --save pm2

To make it easier to run our Node.js application and understand what parameters we
are giving to PM2, we can use an arbitrarily-named JSON file, processes.json, to set
up our production configuration:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 7

https://pm2.keymetrics.io/

Installing Docker

{
"apps": [

{
"name": "api",
"script": "./bin/www",
"merge_logs": true,
"max_restarts": 20,
"instances": 4,
"max_memory_restart": "200M",
"env": {

"PORT": 3000,
"NODE_ENV": "production"

}
}

]
}

In the processes.json we have:

• Named our application,
• Defined the file to run,
• Sets Node.js arguments,
• Set the environment variables.

Finally, edit package.json to add a pm2 action, the scripts section should look like
this:

"scripts": {
"pm2": "pm2 start processes.json --no-daemon",
"start": "node ./bin/www",
"test": "jest",
"migrate": "node ./bin/migrate.js"

},

To start the application with pm2:

$ npm run pm2

Installing Docker
With one of the core tenets of Docker being platform freedom and portability, you’d ex-
pect it to run on awide variety of platforms. Youwould be correct, Docker is everywhere.

• In Windows and Mac: Install Docker Desktop. Find platform-specific steps on the
Mac page and the Windows page.

• In Linux: most distributions include modern versions of Docker in its repositories.
For more details, consult the installation page.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 8

https://www.docker.com/products/docker-desktop
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/debian/

Running Postgres With Docker

Running Postgres With Docker
With Docker, we can run any pre-packaged application in seconds. Look how easy it is
to run a PostgreSQL database:

$ docker run -it -e "POSTGRES_HOST_AUTH_METHOD=trust" -p 5432:5432 postgres

Docker will download a PostgreSQL image and start it on your machine with the 5432
port mapped to your local network.

Now, with the database running, open a new terminal and execute the migrations to
create the table:

$ npm run migrate

The application should be fully working now:

$ npm run pm2

Try again the http://localhost:3000/persons/all route, the error message should be gone
now.

Also, the database tests should be passing now:

$ npm run test

> addressbook@0.0.0 test /home/tom/r/dockerizing-test/addressbook
> jest

PASS ./database.test.js
✓ create person (18ms)
✓ get person (6ms)
✓ delete person (7ms)

Test Suites: 1 passed, 1 total
Tests: 3 passed, 3 total
Snapshots: 0 total
Time: 1.119s
Ran all test suites.

Creating a Dockerfile
We’ve used Docker to run our database without having to install it. But Docker can do
much more; it can create portable images so others can run our software.

There are many ways to use Docker, but one of the most useful is through the creation
of Dockerfiles. These are files that essentially give build instructions to Docker when you
build a container image. This is where the magic happens.

Let’s create a Dockerfile in the root of our project directory:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 9

Creating a Dockerfile

$ cd ..

To get started, we need to choose which base image to pull from. We are essentially
telling Docker “Start with this.” This can be hugely useful if you want to create a cus-
tomized base image and later create other, more-specific containers that ‘inherit’ from
a base container. We’ll be using the official Node image since it gives us what we need
to run our application and has a small footprint.

Create a file called Dockerfile:
Dockerfile

FROM node:16.15-alpine3.14
RUN mkdir -p /opt/app
WORKDIR /opt/app
RUN adduser -S app
COPY addressbook/ .
RUN npm install
RUN npm install --save pm2
RUN chown -R app /opt/app
USER app
EXPOSE 3000
CMD ["npm", "run", "pm2"]
The Dockerfile consists of the following commands:

• FROM: tells Docker what base image to use as a starting point.
• RUN: executes commands inside the container.
• WORKDIR: changes the active directory.
• USER: changes the active user for the rest of the commands.
• EXPOSE: tells Docker which ports should be mapped outside the container.
• CMD: defines the command to run when the container starts.

Every time a command is executed, it acts as a sort of git commit-like action in that it
takes the current image, executes commands on top of it, and then returns a new image
with the committed changes. This creates a build process that has high granularity—any
point in the build phases should be a valid image—and lets us think of the build more
atomically (where each step is self-contained).

This part is crucial for understanding how to speed up our container builds. SinceDocker
will intelligently cache files between incremental builds, the further down the pipeline
we can move build steps, the better. That is, Docker won’t re-run commits when those
build steps have not changed.

Create a file called .dockerignore:
.git
.gitignore
node_modules/

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 10

https://semaphoreci.com/blog/build-stage

Bundling and Running the Docker Container

The .dockerignore is similar to a .gitignore file and lets us safely ignore files or
directories that shouldn’t be included in the final Docker build.

Bundling and Running the Docker Container
We’re almost there. To run our container locally, we need to do two things:

• Build the container:

$ docker build -t addressbook .

• Run the container:

$ docker run -it -p 3000:3000 addressbook

If you now go to http://localhost:3000/persons/all you’ll find the same connection error
as before. This will happen even if the PostgreSQL container is running.

This shows an interesting property of containers: they get their own network stack.
The application, by default, tries to find the database in localhost, but technically, the
database is in a different host. Even though all containers are running on the same
machine, each container is its own localhost, so the application fails to connect.

We could use Docker network commands to manage the container’s network details.
Instead, we’ll rely on Docker Compose to manage the containers for us.

Docker Compose
Docker Compose is a tool for managing multi-container applications. Docker Compose
is bundled with Docker Desktop for Windows and Mac. On Linux, it has to be installed
separately, check the installation page for details

Docker Compose can:

• Start and stop multiple containers in sequence.
• Connect containers using a virtual network.
• Handle persistence of data using Docker Volumes.
• Set environment variables.
• Build or download container images as required.

Docker Compose uses a YAML definition file to describe the whole application.

• Create a file called docker-compose.yml:

docker-compose.yml

version: "3.9"
services:
postgres:

image: postgres

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 11

https://docs.docker.com/engine/reference/commandline/network_connect/
https://docs.docker.com/compose/install/

Docker Compose

environment:
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres

ports:
- '5432:5432'

volumes:
- addressbook-db:/var/lib/postgresql/data

addressbook:
build:

context: .
environment:

DB_SCHEMA: postgres
DB_USER: postgres
DB_PASSWORD: postgres
DB_HOST: postgres

depends_on:
- postgres

ports:
- '3000:3000'

volumes:
addressbook-db:

Stop the PostgreSQL container if it’s still running by pressing CTRL-C on its terminal.
You can check for running containers with:

$ docker ps

Start Docker Compose and run the tests. Compose will build the image as needed and
map the data volumes:

$ docker compose run addressbook npm test

Creating dockerizing-nodejs_postgres_1 … done
Creating dockerizing-nodejs_addressbook_run … done

addressbook@0.0.0 test /opt/app
jest

PASS ./database.test.js
✓ create person (21ms)
✓ get person (10ms)
✓ delete person (10ms)

Test Suites: 1 passed, 1 total
Tests: 3 passed, 3 total
Snapshots: 0 total
Time: 2.475s
Ran all test suites.

We can start the app and use curl to test the endpoint:

$ docker compose up -d
$ curl -w "\n" \

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 12

Dockerize the Node application with CI/CD

-X PUT \
-d "firstName=Bobbie&lastName=Draper" \
localhost:3000/persons

Bobbie’s contact should have been created:

$ curl -w "\n" localhost:3000/persons/all

[
{

"id": 1,
"firstName": "Bobbie",
"lastName": "Draper",
"createdAt": "2020-02-07T23:52:00.448Z",
"updatedAt": "2020-02-07T23:52:00.448Z"

}
]

Perfect, now that everything works, push all the new code to GitHub:

$ git add -A
$ git commit -m "initial commit"
$ git push origin master

Dockerize the Node application with CI/CD
We can use Semaphore Continuous Integration and Delivery (CI/CD) to automate the
build process. That way, we don’t have to worry about keeping the images current,
Semaphore will do it for us.

In addition to Semaphore, we’ll also need a Docker Hub account. The Hub is a free
service provided by Docker to store images on the cloud:

1. Go to Docker Hub and get a free account.
2. Go to Semaphore and sign up.
3. On the upper right menu, click on Settings

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 13

https://semaphoreci.com/cicd
https://semaphoreci.com/blog/build-stage
https://hub.docker.com
https://semaphoreci.com

Dockerize the Node application with CI/CD

Figure 1: Account menu

1. Click on Secrets
2. Click on New Secret.
3. Save your Docker Hub username and password, the secret should be called “dock-

erhub”:

Figure 2: Creating a secret

Docker Hub and Semaphore are connected. Semaphore will be able to push the images
to the registry on your behalf.

We can create a Continuous Integration (CI) pipeline in a matter of seconds:

• Click on the + Create new:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 14

https://semaphoreci.com/continuous-integration

Dockerize the Node application with CI/CD

Figure 3: Create a new project

• Select Choose repository and find your repo from the list:

Figure 4: Choose the source repository

• SelectContinue toWorkflow setup and, if prompted, choose I want to configure
this project from scratch.

• Select the Build Docker starter workflow and click on Customize it first:

Figure 5: Docker starter workflow

TheWorkflow Buildermain elements are:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 15

Dockerize the Node application with CI/CD

Figure 6: CI/CD elements

• Pipeline: A pipeline has a specific objective, e.g. build. Pipelines aremade of blocks
that are executed from left to right.

• Agent: The agent is the virtual machine that powers the pipeline. We have three
machine types to choose from. The machine runs an optimized Ubuntu 20.04 im-
age with build tools for many languages.

• Block: blocks group jobs with a similar purpose. Jobs in a block are executed in
parallel and have similar commands and configurations. Once all jobs in a block
complete, the next block begins.

• Job: jobs define the commands that do the work. They inherit their configuration
from their parent block.

Before continuing, we can do a trial run:

• Click on Run the Workflow on the top-right corner.
• Select themaster branch.
• Click on Start.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 16

https://docs.semaphoreci.com/ci-cd-environment/machine-types/
https://docs.semaphoreci.com/ci-cd-environment/ubuntu-20.04-image/

Dockerize the Node application with CI/CD

Figure 7: Run the workflow to start running the pipeline

The starter CI pipeline builds the image for us. But before we can use it, we have to
modify the pipeline:

• Click on Edit Workflow on the top-right corner.
• Click on the Build block.

Figure 8: Docker build block

• Replace the commands in the box with these:

checkout
echo "${DOCKER_PASSWORD}" | docker login -u "${DOCKER_USERNAME}" --password-stdin
docker pull "${DOCKER_USERNAME}/dockerizing-nodejs-addressbook:latest" || true

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 17

https://semaphoreci.com/blog/cicd-pipeline

Dockerize the Node application with CI/CD

docker build \
--cache-from "${DOCKER_USERNAME}/dockerizing-nodejs-addressbook:latest" \
-t "${DOCKER_USERNAME}/dockerizing-nodejs-addressbook:latest" .

docker push "${DOCKER_USERNAME}/dockerizing-nodejs-addressbook:latest"

• Open the Secrets section and check the dockerhub secret:

Figure 9: Add the dockerhub secret

• Click on Run the Workflow and Start.

Let’s examine what we just did:

• checkout: this is a Semaphore built-in command that clones theGitHub repository
into the CI environment.

• docker pull: downloads the image from Docker Hub, if available.
• docker build: builds the image. If a previous image was pulled, Docker can speed
up the build process with layer caching.

• docker push: pushes the new image to Docker Hub.

We’re tagging our new images as latest. As a result, each new image overwrites the
previous one. As an alternative, you can choose to use a different value for a tag: the
release version, the git hash, or a unique variable like $SEMAPHORE_WORKFLOW_ID to
keep track of different versions.

Once the build process is complete, you should find the image on Docker Hub:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 18

https://docs.semaphoreci.com/ci-cd-environment/environment-variables/

Testing the Dockerized Node Application Image

Figure 10: DockerHub Dashboard

Testing the Dockerized Node Application Image
An effective CI pipeline will not only build the image but test it. In this section, we’ll add
a test block to our pipeline:

Pull the code to your machine:

$ git pull origin master

Add a file called docker-compose.ci.yml:

docker-compose.ci.yml

version: "3.9"
services:
postgres:

image: postgres
environment:

POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres

ports:
- '5432:5432'

addressbook:
image: $DOCKER_USERNAME/dockerizing-nodejs-addressbook:latest
command: "npm run migrate && npm run pm2"
environment:

DB_SCHEMA: postgres
DB_USER: postgres
DB_PASSWORD: postgres
DB_HOST: postgres

depends_on:
- postgres

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 19

https://semaphoreci.com/blog/automated-testing-cicd

Testing the Dockerized Node Application Image

ports:
- '3000:3000'

The new docker-compose file is meant to run only in the CI environment, instead of
building the image on the spot, it pulls it from Docker Hub.

There’s one more thing we can do to speed up the build process in the CI environment.
Semaphore maintains a Docker registry with popular base images. Pulling the base im-
ages from this registry is a lot faster and doesn’t count against Docker Hub pull quotas.
To use the Semaphore registry, replace the contents of the Dockerfile with:

FROM registry.semaphoreci.com/node:16
RUN mkdir -p /opt/app
WORKDIR /opt/app
RUN adduser app
COPY addressbook/ .
RUN npm install
RUN npm install --save pm2
RUN chown -R app /opt/app
USER app
EXPOSE 3000
CMD ["npm", "run", "pm2"]
We changed the FROM line to pull from Semaphore servers instead of Docker’s. We also
removed the -S parameter since this isn’t supported on the base image.

Push the files to GitHub:

$ git pull origin master
$ git add docker-compose.ci.yml Dockerfile
$ git commit -m "add docker compose and Semaphore registry"
$ git push origin master

Next, let’s modify the pipeline to run the tests:

• Go back to your Semaphore project, the push you just did should have triggered a
new workflow, open it.

• Click on Edit Workflow.
• Click on the dotted box: + Add Block to create a new block.
• Name the block: “Test”
• Name the job: “Integration Test”
• Type the following code in the box:

docker-compose run addressbook npm test

• Open the Prologue section and type the following commands. The prologue is
executed before each job in the block:

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 20

https://docs.semaphoreci.com/ci-cd-environment/semaphore-registry-images/
https://docs.docker.com/docker-hub/download-rate-limit/

Testing the Dockerized Node Application Image

checkout
echo "${DOCKER_PASSWORD}" | docker login -u "${DOCKER_USERNAME}" --password-stdin
cat docker-compose.ci.yml | envsubst | tee docker-compose.yml

• Open the Secrets section and check the dockerhub item:

Figure 11: Integration test block

• Click on Run the Workflow and Start:

Figure 12: Pipeline done

Perfect! Semaphore is building and testing the image on each update.

To download the image from Docker Hub:

$ docker pull YOUR_DOCKER_USERNAME/dockerizing-nodejs-addressbook:latest

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 21

Next Steps

Next Steps
Here’re some things you can play with to learn more about Docker:

• Add a third container to your setup: the pm2 docs recommend putting a reverse
proxy in front of your application. You can add a container with an NGINX image to
gain SSL and protect your service. For an example of using a reverse proxy, check
our Ruby on Rails tutorial.

• Addmore tests: you can put all kinds of tests into the CI pipeline for better quality
control.

• Add a deployment pipeline: once you decide you want to release your applica-
tion, you can add more pipelines to your workflow so it automatically deploys to
your platform of choice.

Dockerizing the application is the first step towards portable deployments. The next
thing is to decide where we want to run it. There are many alternatives:

• Self-hosted: run the containers in your server.
• PaaS: run the containers directly on a Platform as a Service provider such as
Heroku.

• Orchestration: run the application with an orchestrator such as Docker Swarm or
Kubernetes.

Check these tutorials to learn how you can deploy your application:

• More about deploying to Kubernetes:
– How To Build and Deploy a Node.js Application To DigitalOcean Kubernetes
Using CI/CD

– A Step-by-Step Guide to Continuous Deployment on Kubernetes
• Learn more about Docker:

– Learn all about Docker & Kubernetes on Semaphore
– Get our free ebook: CI/CD for Docker and Kubernetes

• Learn how to deploy to Heroku:
– Continuous Deployment of a Python Flask Application with Docker and
Semaphore

Conclusion
We have looked at Docker — what is, how it works, how we can use it — and how we
might run a simple Node.js application in a container. Hopefully, you feel able and
ready to create your own Dockerfile and take advantage of the many powerful features
it brings to your development life.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 22

https://pm2.keymetrics.io/docs/tutorials/pm2-nginx-production-setup
https://semaphoreci.com/community/tutorials/dockerizing-a-ruby-on-rails-application
https://semaphoreci.com/blog/nodejs-digitalocean-kubernetes
https://semaphoreci.com/blog/nodejs-digitalocean-kubernetes
https://semaphoreci.com/blog/guide-continuous-deployment-kubernetes
https://semaphoreci.com/product/docker
https://semaphoreci.com/resources/cicd-docker-kubernetes
https://semaphoreci.com/community/tutorials/continuous-deployment-of-a-python-flask-application-with-docker-and-semaphore
https://semaphoreci.com/community/tutorials/continuous-deployment-of-a-python-flask-application-with-docker-and-semaphore

Conclusion

© 2022 Rendered Text. All rights reserved.

This work is licensed under Creative Commmons Attribution-NonCommercial-
NoDerivatives 4.0 International. To view a copy of this license, visit https://creati
vecommons.org/licenses/by-nc-nd/4.0

The source text is open source: https://github.com/semaphoreci/papers

Originally published at: https://semaphoreci.com/community/tutorials/dockerizing-a-
node-js-web-application

Original publication date: 15 Jul 2022

Authors: Mark Thomas

Editor: Marko Anastasov

Reviewed by: Tomas Fernandez

Build date: Aug 2022

Revision: 06632b0

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 23

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://github.com/semaphoreci/papers
https://semaphoreci.com/community/tutorials/dockerizing-a-node-js-web-application
https://semaphoreci.com/community/tutorials/dockerizing-a-node-js-web-application

	What is Docker, Anyway?
	Advantages of Using Docker
	Prerequisites
	Create Repository
	Directory Structure
	Add a Route

	Configuring the Database
	Start the Application
	Setting Up PM2
	Installing Docker
	Running Postgres With Docker
	Creating a Dockerfile
	Bundling and Running the Docker Container
	Docker Compose
	Dockerize the Node application with CI/CD
	Testing the Dockerized Node Application Image
	Next Steps
	Conclusion

