
How does
Semaphore
Open Source
work?

Opening Up Semaphore: Building the
Future of CI/CD in the Open
A Technical Deep Dive into the Architecture, Strategy, and Community-Driven
Development of Semaphore

Executive Summary
Semaphore, the trusted CI/CD platform used by thousands of engineering teams, is
entering a new era by open-sourcing its core technology. With a modular microservices
backbone, a robust orchestration engine, and a collaborative open source ethos,
Semaphoreʼs Community Edition is purpose-built for teams seeking flexibility,
transparency, and control.

This white paper outlines the motivations behind this strategic move, the architectural
principles that power Semaphore, how it was opened up, and the future it enables for
developers and organizations.

Table of Contents
1. Foreword
2. Why Go Open Source?
3. Developer-Led Design: Building the Community Edition
4. Testing in the Open: Ephemeral Environments
5. Under the Hood: Semaphore Architecture and Orchestration
6. One API to Rule Them All
7. Building in Public
8. The Road Ahead
9. Use Case: Semaphore in an Air-Gapped Fintech Environment
10. Appendix: Examples and Resources
11. Conclusion

1. Foreword
In 2010, we were a team of five consultants, installing Jenkins and debugging plugin
failures. That frustration eventually sparked Semaphore. We launched our hosted CI/CD
service in 2012, starting with a strong focus on the Ruby on Rails community. Over time,
the product evolved through a full rewrite, the introduction of an enterprise edition, and
support for on-premise deployments.

In 2025, we reached a milestone: Semaphore is now open source. In this white paper, we
the journey so far in open sourcing our platform.

2. Why Go Open Source?
Many teams loved Semaphoreʼs speed and reliability, but couldnʼt use it due to
compliance constraints or infrastructure limitations. By going open source, weʼre
removing those barriers.

Open-sourcing Semaphore lets developers deploy it anywhere — on a laptop, in a private
cloud, or behind a firewall — and encourages public collaboration, resulting in a stronger,
more inclusive product.

3. Developer-Led Design: Building the Community Edition
Cloud platforms present fundamentally different challenges from open source. Cloud
platforms provide a built-in structure. This includes technical support, automated
maintenance, and predictable infrastructure. Open source solutions, however, offer none
of these advantages. This disparity forced us to completely rethink our onboarding
approach for the Community Edition.

We focused on:

● Simple installation: Using Helm and Terraform to simplify setup
● Self-guided onboarding: Get started quickly
● Documentation as product: We redesigned the docs with first-time users in mind

We tested this with real users. We recorded their sessions, measured time-to-first-job,
and iterated until we could deliver success without any hand-holding

4. Testing in the Open: Ephemeral Environments
Semaphoreʼs internal CI/CD was deeply tied to our infrastructure. But for open source to
work, we had to prove Semaphore runs cleanly on customer hardware and any cloud
provider.

We built ephemeral test environments to ensure Semaphore works everywhere:

● GCP We created a minimal Terraform setup with Helm charts, DNS reservations,
and static IPs

● AWS We added EKS-specific tooling like AWS LB Controller and External DNS
● Local testing: we focused on running Semaphore on a single VM, ensuring

fast-booting a k3s cluster for dev iteration

Each release spins up fresh environments, runs end-to-end tests, and tears them down.
Itʼs automated, portable, and repeatable.

5. Under the Hood: Semaphore Architecture and
Orchestration
Semaphore runs on a distributed system of over 30 microservices built in Elixir and Go,
and orchestrated by Kubernetes.

Core Services

● Plumber: Orchestrates pipelines using a state machine
● Zebra: Assigns jobs to agents
● Log Hub: Streams, stores, and archives logs

Communication Stack

● gRPC for internal messaging
● HTTP for user/API interaction
● RabbitMQ for asynchronous task queues

Agent Model

● Hosted or self-hosted: Agents run jobs either in Semaphoreʼs cloud or inside your
infrastructure

JSON

● Quota-controlled: We use Postgres advisory locks to prevent rogue agents from
overusing resources

● Stateful lifecycle: We more clearly manage transitions through job lifecycle states

6. One API to Rule Them All
Semaphoreʼs early API was fragmented. We rebuilt them into a unified, resource-oriented
API inspired by Kubernetes:

{
 "kind": "project",
 "metadata": { "id": "proj-123" },
 "spec": {
 "name": "My App",
 "description": "CI/CD pipeline"
 }
}

Features:

● Rich object representations (e.g., full user info, not just IDs)
● Resource-scoped custom methods (e.g., POST /projects/{id}/start)
● Typed schemas, validation, and permission checks via OpenAPI-first development

This unified API makes Semaphore easier to reason about, document, and extend,
especially in the open.

7. Building in Public
Open source isnʼt just a licensing change; itʼs a new way of working.

We now:

● Use a public GitHub repository for product and code
● Host discussions and SIGs (special interest groups) on Discord
● Share designs and product reviews on YouTube via Semaphore Backstage
● Run meetings and release planning transparently

Weʼre also creating:

● Clear contribution guidelines
● Beginner-friendly issues
● Dedicated maintainer hours

We aim to design in the open, with the communityʼs help.

8. The Road Ahead
Weʼre just getting started. Hereʼs whatʼs next:

● Monthly releases for faster feedback
● Continued API improvements with better errors and discovery tools
● New testing scenarios across clouds
● Contributor roles and SIG expansions

We believe open source should come with great UX, deep testing, and long-term support.

9. Use Case: Semaphore in an Air-Gapped Fintech
Environment
A mid-sized fintech company with strict compliance requirements wanted to migrate from
a legacy CI/CD setup to Semaphore Community Edition. The goal was to perform
Kubernetes deployments in an air-gapped network. This meant a fully self-hosted setup
with audit logs.

Challenges

● No access to public cloud or external registries
● Compliance rules around access control and audit trails
● Need for repeatable test environments for each deployment

How They Solved It with Semaphore

● Self-hosted agents are deployed via Kubernetes inside their secure network
● Secrets management is integrated with their internal vault system
● Pipeline audit logs are exported to internal SIEM tools via custom webhooks

None

● Ephemeral test environments spun up using k3s to validate microservice
deployments pre-production

Outcomes

● Reduced deployment times by 40%
● Full compliance with internal and regulatory controls
● Ability to run Semaphore entirely offline with air-gap scripts

This case highlights Semaphoreʼs value when flexibility, control, and transparency are
critical.

10. Appendix: Examples and Resources

Sample Pipeline YAML

version: v1.0
name: Build and Test
blocks:
 - name: Build
 task:
 jobs:
 - name: Compile
 commands:
 - make build
 - name: Test
 task:
 jobs:
 - name: Unit Tests
 commands:
 - make test

JSON

Shell

Sample API Response

{
 "kind": "workflow",
 "metadata": {
 "id": "wf-001",
 "created_at": "20250601T120000Z"
 },
 "spec": {
 "project_id": "proj-456",
 "status": "running"
 },
 "created_by": {
 "kind": "user",
 "id": "user-789",
 "name": "alice"
 }
}

Helm Install Snippet

helm upgrade --install semaphore oci://ghcr.io/semaphoreio/semaphore \
 --version v1.3.0 \
 --set global.domain.name="example.com" \
 --set ingress.ssl.certName="example-certificate"

Useful Links

● GitHub repo: https://github.com/semaphoreio/semaphore
● Public API docs: https://docs.semaphoreci.com/reference/api
● Discord: https://discord.gg/FBuUrV24NH
● Open Roadmap:

https://github.com/semaphoreio/semaphore/blob/main/ROADMAP.md

https://github.com/semaphoreio/semaphore
https://docs.semaphoreci.com/reference/api
https://discord.gg/FBuUrV24NH
https://github.com/semaphoreio/semaphore/blob/main/ROADMAP.md

11. Conclusion
We didnʼt just flip a switch to go open source. We have to rethink how Semaphore is built,
tested, and shared. The result is a robust CI/CD engine that developers can run, inspect,
and contribute to.

Whether youʼre looking for a powerful tool to run behind your firewall or want to shape the
future of developer tooling, Semaphore Community Edition is here.

Letʼs build it together.

Opening up
Semaphore
Building the future of CI/CD in the open

	Opening Up Semaphore: Building the Future of CI/CD in the Open
	Executive Summary
	Table of Contents
	1. Foreword
	2. Why Go Open Source?
	3. Developer-Led Design: Building the Community Edition
	4. Testing in the Open: Ephemeral Environments
	5. Under the Hood: Semaphore Architecture and Orchestration
	Core Services
	Communication Stack
	Agent Model

	6. One API to Rule Them All
	Features:

	7. Building in Public
	8. The Road Ahead
	How They Solved It with Semaphore
	Outcomes

	10. Appendix: Examples and Resources
	Sample Pipeline YAML
	
	Sample API Response
	Helm Install Snippet
	Useful Links

	
	11. Conclusion

