
What Is Blue-Green Deployment?
semaphoreci.com

Practiced by the likes of Amazon for more than a decade, blue-green is a proven and safe
method for continuous software deployment.

Have your users ever experienced downtime caused by a buggy release? Have you ever
been called on a weekend to roll back an upgrade? Do you usually have to wake up at
insane hours because that is the only time you can take down a system? Do release days
make you feel anxious?

If so, it’s all right—you’re not alone—but it doesn’t have to be that way. Many methods
can help us make safe deployments without downtime or the need for maintenance
windows. One of these methods is called blue-green (or blue/green), and that’s what we’ll
learn about today.

What is Blue-Green Deployment?

Blue-green deployment is a release management technique that reduces risk and min-
imizes downtime. It uses two production environments, known as Blue and Green, to
provide reliable testing, continuous no-outage upgrades, and instant rollbacks.

The Origins of Blue-Green Deployments

The story begins around 2005, with two developers and a problem. The e-commerce
site they were working on was showing many unexpected errors. These developers
were meticulous and had a good test suite in place, but, for some reason, errors were
flying under the radar and reaching production. The whole situation was causing a lot
of trouble for their customers.

Upon amore in-depth examination, they found the cause. They noticed that there were
toomany differences between the production and test machines. Their tests were pass-
ing in the test environment, but the code was failing when deployed in production.

These developers, Daniel North and JezHumble, then had anunconventional yet brilliant
idea. They would deploy and test directly in production.

1

https://gitlab.com/snippets/1846041


Now I know what you’re thinking. Isn’t testing in production a big no-no? Normally, yes.
But you see, the key point here is that they weren’t overwriting the old site. Instead, they
were running the new one side-by-side, in the same physical box, so users were unaware
of the ongoing deployment. The old site continued working as usual while Dan and Jez
worked on the release.

The deployment worked like this. They copied the folder containing the latest version
into the production machine. Then they started the website using a separate domain
and smoke-tested it right there. Once they were happy, they would point the Apache
web server to the new folder, call it a day, and presumably have a round of beers. If
anything went south, they could point the web server back to the old folder, fix the
errors, and try again. This strategy greatly improved error detection because test and
production environments were now the same.

Figure 1: Blue-Green Deployment

At this point, they had two environments on the same machine: one for the old version
and another for the new. Initially, they wanted to call them by letters: environment A,
environment B, and so on. But someone pointed out that people would tend to believe
that A is somehow better than B (maybe it sounded too much like “plan B”). They finally
settled on using colors instead, which didn’t have a natural order. Thus, they planned
names like blue, green, or orange (they avoided red because it implied danger). In the
end, it turned out they only needed two environments. And so the term blue-green was
coined.

How Do Blue-Green Deployments Work?

With a few caveats that we’ll explore later, blue-green pretty much checks all the boxes
for an ideal deployment process:

• Seamless: users shouldn’t experience any downtime.
• Safe: low chance of failure.
• Fully-reversible: we can undo the change without adverse effects.

The basis of the blue-green method is side-by-side deployments. For that, we need two
separate but identical environments. And I mean environment in the most general way,

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 2



including servers, virtual machines, containers, configurations, databases, among other
things. Sometimes we can use different boxes. Other times we can use separate virtual
machines running on the same hardware. Or they can be different containers running
in a single device.

In its purest form, blue-green asks us to duplicate every resource our application de-
pends on.

Figure 2: Two independent production environments

In practice, however, it doesn’t always make sense to run a spare copy of everything.
Keeping two databases in sync, for instance, is notably hard. For that reason, we fre-
quently find blue-green deployments with shared components.

Figure 3: Two production environments with some shared components

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 3



We also need some way of switching incoming connections between the two environ-
ments. We’ll represent this with a router symbol. It can be an actual router, a load
balancer, a reverse proxy, or, like in the original case, a web server.

Figure 4: The router switches traffic to one production environment at a time

Blue and green take turns to play the role of production. Only one of the environments
is live at any given time. Say, for instance, that blue is active. In that case, it receives all
the traffic—meanwhile, green acts as a staging area, where we can deploy and test the
next version.

Figure 5: Users continue accessing v1 on blue while the new v2 release is deployed on
green

Once we make sure the version running in green is working well, we’ll switch the route.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 4



Then the cycle begins again.

Figure 6: Blue-Green Deployment

Deployment is complete once users are switched to the new version running on green

The Cloud Makes Blue-Green Deployments More Feasible

Keeping two sets of environments up all the time can get expensive. Fortunately, we
have many tools that allow us to bring up and tear down infrastructure on-demand.
We can start and stop servers with infrastructure as code (IaC) platforms like Ansible or
Terraform. We can simplify releases with containers, or orchestrate deployments using
Kubernetes. Surprisingly, when we factor in the flexibility and cost reductions the cloud
offers, blue-green deployments are within everyone’s reach.

The cloud abstracts most of the infrastructure away. We can picture deployments as a
series of loosely coupled components.

Figure 7: Blue production environment in the cloud

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 5



When it’s time for a new release, we create new resources without touching the live
environment. In practice, we’ll use a CI/CD tool like Semaphore to create identical new
components and make the deployment.

Figure 8: Green production environment is created on demand

We then re-route all user connections at once.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 6

https://semaphoreci.com/cicd
https://semaphoreci.com/


Figure 9: User traffic is cut-over to the green production environment

Once the deployment is complete and we’re satisfied, we can scrap the old environment.

Figure 10: Blue is removed to free up resources and reduce costs

One technology that makes blue-green very straightforward is Kubernetes. To learn
more and see Kubernetes deployments in action, grab yourself a free copy of our eBook:
CI/CD with Docker and Kubernetes.

Who Can Benefit From Blue-Green Deployments?

Blue-green is a great solution when we need:

• Uptime: when we can’t afford to bring down a system to update it.
• Accurate tests: when need more reliable and accurate tests.
• Reliability: when we want to improve the reliability of our deployments.

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 7

https://semaphoreci.com/resources/cicd-docker-kubernetes


To use blue-green deployments, we’ll need a few things:

• Automation: we need continuous delivery pipelines to automate the provisioning,
deployment, and testing process.

• Testing: we need exhaustive tests. We’ll rely on them to decide when releases are
ready to deploy. We should use continuous integration to catch errors quickly and
test new versions before going live.

• Isolation: we need two identical and separate environments. Otherwise, one en-
vironment may affect the other.

Can everyone do blue-green deployments? Not always, certain situations may prevent
us from using the method:

• When, for whatever circumstance, we can’t make continuous updates.
• When regulations restrict how software must be updated. For example, in the
aerospace, telecom, or medical industries.

• When we can’t have two identical environments.
• When we can’t isolate the environments.
• When due to infrastructure, we can’t use a router, a load balancer, or reverse proxy.
• When we have breaking database schema changes. Database changes need to be
forward and backward compatible.

The Pros of Blue-Green Deployments

So, is blue-green the right deployment strategy for you? To answer that, we’ll have to
compare its pros and cons.

Let’s start with the pros:

• Testing parity: this is THE feature. Testing parity means that tests truly mirror the
reality of production. This is what Dan and Jez were looking for when they devised
blue-green. By running tests on the same hardware and software, theymade them
more useful and meaningful.

• Deploy at any time: no downtime means that we can make releases at any time.
There is no need to wait for maintenance windows.

• Instant cut-over: users are switched to the new version instantaneously, or nearly
so. Everyone sees the latest release at the same time.

• Instant rollback: the cut-over works both ways. If we decide to go back to the
previous version, we can switch all users back in an instant.

• Hot standby: blue-green can save us from disaster scenarios. Suppose that one
data center goes offline, bringing the live environment down. No biggie, we’ll
switch to the other until the problem is fixed. This will work as long we have had
the precaution of not putting blue and green on the same availability zone.

• Postmortem: debugging failed releases is hard with in-place deployments. When
faced with downtime, the priority is always to return to normality. Collecting de-
bugging data is secondary, so a lot of valuable information may be lost during the

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 8

https://semaphoreci.com/blog/cicd-pipeline
https://semaphoreci.com/continuous-integration


rollback. Blue-green doesn’t suffer from this problem—rollbacks always leave the
failed deployment intact for analysis.

The Downsides of Blue-Green Deployments

At this point, you might be thinking that blue-green must have a catch. Otherwise, ev-
eryone that could would be using it. So, let’s examine the drawbacks:

• Cold starts: users may experience slowness when they are suddenly switched to
the new environment. Also, any undetected performance problems are likely to
appear at this point. Warm-up jobs and stress tests mitigate these issues.

• Costs: compared to other methods, blue-green deployments are more expen-
sive. Provisioning infrastructure on-demand helps. But whenwe’remaking several
scaled-out deployments per day, the costs can snowball.

• Time: setting up the blue-green deployment process takes time and effort. The
process is complex and has a great deal of responsibility. We may need to do
many iterations before we get it working right.

• Databases: database migrations are harder, even to the point of being a show-
stopper. Databases schema changes must be forward and backward compatible.
Wemay need tomove back and forth between the old and new versions. The prob-
lem is compounded when we have two databases, one for blue and one for green.
Keeping data in sync is a pain. Common strategies to deal with this involve using
replication or making one database read-only.

• User transactions: during the cut-over, some user transactions will be inter-
rupted. Wemust carefully consider how to handle them. How should we deal with
half-applied transactions? Do we present an error message and tell the user to
try again? Or do we try to carry them over to the new environment? One possible
solution is to feed all the transactions to both environments simultaneously, in
parallel. In this scenario, we would need to deal with any duplicated data after the
deployment finishes.

• Shared services: databases and other shared services can leak information be-
tween blue and green. We need to be cautious here, otherwise one environment
may affect the other indirectly. This could break the isolation rule and interfere
with the deployment.

As you can see, blue-green has many advantages over traditional in-place deployments,
but it also has some downsides. Some people do not like the all-or-nothing approach
and prefer to use the canary releases, which combine elements from blue-green and
in-place deployments and offer more gradual transitions. You can read all about canary
deployments in our free eBook CI/CD with Docker and Kubernetes.

Where to Learn More

We have learned what blue-green deployments are, how they came to be, and the prob-
lems they solve. I hope this post helps you decide if blue-green is the right deployment

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 9

https://semaphoreci.com/resources/cicd-docker-kubernetes


strategy for you.

Learn about more ways of deploying software with these posts:

• Kubernetes Deployments: The Ultimate Guide
• A Step-by-Step Guide to Continuous Deployment on Kubernetes
• What’s the Difference Between Continuous Integration, Continuous Deployment,
and Continuous Delivery?

Thanks for reading!

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 10

https://semaphoreci.com/blog/kubernetes-deployment
https://semaphoreci.com/blog/guide-continuous-deployment-kubernetes
https://semaphoreci.com/blog/2017/07/27/what-is-the-difference-between-continuous-integration-continuous-deployment-and-continuous-delivery.html
https://semaphoreci.com/blog/2017/07/27/what-is-the-difference-between-continuous-integration-continuous-deployment-and-continuous-delivery.html


© 2022 Rendered Text. All rights reserved.

This work is licensed under Creative Commmons Attribution-NonCommercial-
NoDerivatives 4.0 International. To view a copy of this license, visit https://creati
vecommons.org/licenses/by-nc-nd/4.0

The source text is open source: https://github.com/semaphoreci/papers

Originally published at: https://semaphoreci.com/blog/blue-green-deployment

Original publication date: 5 Aug 2020

Authors: Tomas Fernandez

Build date: Sep 2022

Revision: 045d7b6

Published by Semaphore: CI/CD for teams that don’t like bottlenecks - semaphoreci.com 11

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://github.com/semaphoreci/papers
https://semaphoreci.com/blog/blue-green-deployment

	What is Blue-Green Deployment?
	The Origins of Blue-Green Deployments
	How Do Blue-Green Deployments Work?
	The Cloud Makes Blue-Green Deployments More Feasible
	Who Can Benefit From Blue-Green Deployments?
	The Pros of Blue-Green Deployments
	The Downsides of Blue-Green Deployments
	Where to Learn More

